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A F A M I L Y  O F  F A C E  P R O D U C T S  O F  

M A T R I C E S  AND ITS P R O P E R T I E S  

V. I. Slyusar UDC 512.64 

As is well known, there existed periods in the history of mathematics when technological progress introduced 
noticeable correctives in the natural course of the development of abstract mathematical theories. In recent years, such 
a stage has come in the theory of matrices. This time, it has affected rather fundamental principles of linear algebra, 
supplementing it by new operations of composition of matrix data. 

In addition to the classical set of these operations, due to the objective demands for technological applications 
of systems analysis a lot of unconventional procedures of matrix multiplication should be introduced in practice. In 
particular, we mean the generalized Kronecker products with respect to columns and rows [1, 2], left and fight almost 
Kronecker products [2], and also the family of face products of matrices [3-5]. 

The face multiplication, which was primarily proposed for processing signals of digital antenna arrays, may be 
also used for analysis of other complicated systems. Therefore, the objective of this article is to generalize its properties 

and consider new varieties of such a procedure for block matrices. 
According to [3-5], we will call the p x g s  matrix A 13 B specified by the equality 

A El B = [aijB i] (1) 

the face product of the p x g  matrix A = [a 6] and pxs matrix B that is represented as the block-matrix of the rows .B i 

(B = [Be], i=  1 . . . . .  p). 

Example 1. 

A ~  Ia" a'21 Iba' b'2 b'31 a21 a22 , B = b21 b22 b23 ; 
a3! a32 b31 b32 b33 

A r a B =  
all 'bl  1 
a21"b21 
a31"b31 

all 'bl2 all 'bl3 I al2"bll al2"bl2 al2"bl3] 
a21"b22 a21"b23 i a22"b21 a22"b22 a22"b231. 
a31"b32 a31b33 I a32"b31 a32"b32 a32"b33 J 

If the matrix A is considered in this example as the .totality of the column vectors corresponding to the initial 
coordinates of several points moving in a Cartesian coordinate system, then the semantic aspect of the product A [] 
B can be described as a geometric transformation B that equally changes the like (i.e., of the same name) coordinates 

of all the points of the object A. 
In essence, before the introduction of the face product in matrix algebra, the following two extreme variants of 

matrix-data composition existed: the Hadamard and Kronecker products, which reflect the elementary and extremely 
general levels of decomposition of matrices as systems of numbers. In the former case, the elementwise multiplication 
is executed, and in the latter and its generalizations [1, 2], almost the entire matrix is considered as a multiplier. At 
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the same time, the face product represents an intermediate level of the decomposition of matrices that consists in their 
rowwise fragmentation. The term "face" figuratively reflects the fact that the end face of the right matrix is, as it 
were, split into rows before multiplying by the elements of the left matrix. 

The symmetric complement of the face variant of multiplication is its transposed modification. According to 
[3-5], the transposed face product (TFP) of the g• matrix A = [aij] and the s• matrix B that is represented as a 

block matrix of the columns (B = [Bj], j = 1 . . . . .  p), is the gsxp matrix A [] B specified by the equality 

A [] B = [aij.Bj]. (2) 

Example 2. 

A . - -  

[a l l  a12 a13] [b l l  b12 b13] 
a21 a2 2 a23], B= b21 b2 2 b23 ; 

a l l 'b l l  a12"b12 a13"b13 ] 
all'b21 a12"b22 a13"b23 I 

A [ ] B =  ail~b~l..a22.b;2.a2;.bl;. |. 

a21"b21 a22"b22 a23"b23 J 

It is worthy of note that, for expressions (1) and (2), we can write the law of inversion of the order of matrices 
[5]. This law is similar to the well-known property of transposition of generalized Kronecker products with respect to 
rows and columns [1] 

(A [] B) T = A  T[] B T  (A [] B) r = A  r O B 7. (3) 

[3-5]: 

The first things to notice are the following associative and distributive properties of face products of matrices 

(A 121 B) [] C = A El (B [] C), (A [] B) [] C=A II (B [] C), (4) 

(A+B) [] C = A 121 C + B [] C, (A + B) [] C = A [] C+B [] C, (5) 

A D (B+C) = A D B  + A  D C , A  I I ( B + C )  = A  I I B + A  [] C, (6) 

(A+B)  121(C + D ) = A  D C + B [] C +A • D + B [] D, 
(7) 

(A + B) II ( C + D ) = A  [] C + B [] C + A [] D + B [] D. 

Naturally, it is assumed that the forms of the matrices are concordant in expressions (4)-(7). The relations for 
TFP can be easily obtained by transposing the corresponding expressions for the face product. Therefore, in what 
follows, we will restrict ourselves, whenever possible, to-consideration of the properties of face multiplication, except 
for the cases where the representation contains both varieties of this multiplication. 

Taking account of what has been said above, let us recall that the face products are not commutative [5], i.e., 

A DB~:B DA, (8) 

though the commutativity of vectors and the products of vectors and matrices is admissible [3], i.e., 
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a D B = B D a .  

In the particular case where a and b are vectors, the following easily checked properties take place [3]" 

(9) 

r r r |  a D b  =a (10) 

(a is a p-vector and b is a g-vector); 
a D b =  a O b  (11) 

(a and b are p-vectors, "C)" is the symbol the of Hadamard product). 

The procedure of face product makes it possible to reduce the number of computing operations in prevalent 
problems of multiplication of the diagonal matrix A =diag [a 1 a 2 . . . a p ]  and pxs matrix B: diag [a I a 2 . . . a p ] .  

T 
B = [a 1 a 2 . . .  ap] D B. In this case, according to [3], in contrast to the ordinary product, the multiplication operations 

are reduced in number by a factor of p for the face product, and the execution of p s ( p -  1) additions is not necessary 
at all. 

The consideration of interrelation of the face products with the multiplication methods that are well known in 
matrix theory is of most interest in the case where one expression contains several of their varieties. In this case, 
according to [5], 

A |  n C)=(A | D C, (12) 

A O (B E1 C)~:(A O B) [] C. (13) 

The adaptation of the face product with the Hadamard one is possible within the framework of the identity [3] 

(A O B)13 (C O D ) =  (A F'IC) O (B [] D), (14) 

which holds true if A and B are mxn matrices, and C and D have the dimension mxp. The Hadamard product on the 
right side of (14) is defined, since its constituents A [] C and B D D are mxnp block matrices. 

In view of the property of commutativity of the elementwise multiplication, relation (14) may be rewritten in 
the form 

(A O B)D  (C O D)=(A [] D) O (BDC) 

= (B [] D) O (A []C) = (B DC) O (A I-1D). 

For the m-vector b, mxrmatrix S, and mxtmatrix F, it is easy to verify the validity of the substitution formula 

(S T �9 F T).b = vec [(b T �9 F T).S ], where "vec" is an operator representing the mxr matrix by means of a mr-column 

vector [6]. 

Since a combination of the face and transposed face products is also possible within the framework of matrix 
representation, we can make use of the theorem announced in [3] and given below. 

THEOREM 1. If all matrix products are defined, then the face and transposed face products of matrices satisfy 
the equality 

(A D B).(C � 9  = (A.C) 0 (B.D). (15) 

Proof. Let the dimensions of A, B, C, and D be equal to jxk,  jxz ,  kxp, and zxp, respectively. Since the matrix 

A [] B consists of k• columns and the matrix C U D consists of kxz rows, the matrix product (A i-1 B).(C �9 D) is 
defined. It consists of j rows and p columns. The element that is situated at the intersection of the jth row and the 

pth column is equal to E E ajkbjzc~dzp. 
k z 
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Since the matrices A.C and B.D contain j rows and p columns, respectively, the Hadamard product (A.C) O 

(B.D) is the j x p matrix and its element that is situated at the intersection of the jth row and pth column is equal 
to 

Z aj c ,,Zbj G- Z Z aj bjz  ,,dz,,, 
k z k z 

and this completes the proof. 
The theorems on the absorption of the Kronecker products by the face ones are easily proved by analogy. 

THEOREM 2. For the matrices A, B, C, and D whose dimensions are, respectively, j xk  (j is the number of 
rows and k is the number of columns), mxz, kxp, and zxp, the following equality is valid: 

(A | B).(C m D) = (A.C) [ ]  (B.D). (16) 

THEOREM 3. For the matrices A, B, C, and D whose dimensions are pxk, pxz, kxj, and zxm, respectively,, the 
following equality is valid: 

(A 0 B).(C | D) = (A.C) 0 (B.D). (17) 

The proof of Theorem 3 may be also constructed on the basis of transpositions of expression (16). Indeed, 

[(A | B).(C �9 D)] r= (C �9 D)T.(A | B) r__. (C 7" 0 D T).(A T | B T). 

On the other hand, 

[(A | B).(C �9 D)] T--- [(A.C) �9 (B.D)]T(c  T'AT) D (D T.B T). 

Thus, ( C T • O T).(A T | B T) = ( C TAT) 121 (D T.B T). 

Having replaced the above designations, it is easy to obtain (17), which is what had to be proved. 
A consequence of Theorems 1-3 is one more property of "absorption": 

(A [] L)(B | M).(C | N ) . . . . . ( J  | S)-(K �9 7) = (A.B.C.. . . .J .K) 0 (L.M.N- . . . .S.T), 

which completes the enumeration of the properties of the face product that are known to date. 
In statistical analysis of a collection of subsystems of the same type that form a complicated system, for example, 

a multiposition radio-locating network consisting of several receiving stations, block matrices are used. As is well 
known [5], rules (1)-(16) are also applicable to them; however, in some cases, there is a need for special block 
modifications of face products, which were first considered in [5]. 

One of them is the block face product (BFP), which, for the bpxcs matrix A =[Aij] and bpxcg matrix 

B = [Bij] (i = 1 . . . .  b; j = 1 . . . .  c) with a concordant partition into blocks, whose size is equal to pxs and pxg, respectively, 

is determined by the following equality [5]: 

A ~ B = [Ai) rq Bij ]. (18) 

Example 3. 

p . _  

[, ] '  ,221 
Pl P2 = P211 P221 ] P212 P222 l, 

I P311 P321 I P312 P322] 
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T _ - -  Tt 
I t,,, t,2, t,3, I t,,2 t,22 ,,32] 

T 2 = t211 t221 t231 [ t212 t222 t232/, 
t311 t321 t331 I t 312 t322 t332J 



E 1 P 1]" T= P1 I-IT1 P2 I-IT 2 �9 
i 

If each block of the matrix P is treated as the totality of column vectors describing the parameters of the state 
of two subsystems of an object in one of independently varying reference systems, then a certain two-component system 
functioning simultaneously in two different reference systems can be assigned to the entire matrix P in the example 
considered. The block face product A n" T makes it possible to formalize the dynamics of evolution of such a system 
at successive points of time (three in this example) during the transformation of the reference systems that identically 
change the like parameters of column vectors in each reference system. It is especially important that the laws of 
parameter transformation are assumed to be dependent on reference systems and variable in time. 

In the case where the partition into blocks is discordant, the face product of matrices (1) can be also used 
instead of BFP. In particular, for the engineering object P considered in the preceding example, a transformation may 
be specified that identically changes the parameters of the states of the subsystems with respect to all the reference 
systems. Its result will be written according to rule (1) as follows: 

e ~  [ ] I/ll, r,2, t,31 I 1 P1 P2,  T= t211 t221 t231 , P 12 T= PI El T P2 [] T . 
I t311 t321 t331 I 

The above holds true for the transposed BFP [5]. By definition, the transposed block face product of the 
csxbp matrix A = [Aij] and cgxbpmatrix B=[Bij] (j'= 1 . . . . .  c; i=  1 . . . . .  b) with a concordant partition into blocks, 

whose size is equal to sxp and gxp, respectively, is the matrix A ~ B specified by the equality A ~ B = [Aij �9 Bij]. 

Note that the block types of products have many properties that are inherent in the face multiplication and its 
transposed variant; therefore, they are not discussed here. 

In conclusion, let us consider one more modification of the face product that can be useful in technological 
applications. Its essence lies in using a series of numbers located in a dimension, which is additional relative to the 
left matrix, as the rows by which the fight matrix is to "be split." In this case, the penetrating face product of the 
pxg matrix A = [aij] and n-dimentional matrix B (n > 3) that is unfolded in the block row with pxg blocks (B = [Br]) 

is a matrix of size B of the form 

A I I I I ].  
A (~B = 0 B1 A 0 B2 . . .  A 0 Br "'" , 

I I I I 
(19) 

where A C) B r is the Hadamard product. 

Example 4. 

I al 1 a12 
A = a21 a22 

a31 a32 

i bll I b121 I bl12 b122 I bl13 b123 1 
, B= b211 b221" I b 212 b222 I b 213 b223 , 

b311 b321 I b312 b322 I b313 b323 

A @8 

I all .bll  a12-b121 I al l .bl l  2 a12.b122 I all.bll3 a12"b1231 
= a21"b211 a22"b221 I a21"b212 a22"b222 I a21"b213 a22"b223 .] 

a31"b311 a32"b321 I a31"b312 a32"b322 I a31"b313 a32"b323 
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Treating B as a matrix of Cartesian coordinates of the points that form a geometric object containing two points 

on each of three planes, the transformation A Q B may be interpreted as a space deformation for which the coordinates 
of the like points of an object, which belong to different planes, are transformed identically. 

In this situation, the face product (1) produces a weighted "duplicating" of the three-dimensional matrix, repeating 
it according to the number of columns of the two-dimensional one. The distinctive feature of the penetrating face 
product is the "penetration" of the two-dimensional matrix through the three-dimensional one without changingthe 
dimension of the latter (an unfolded representation in (19) and in Example 4 is given for the sake of obviousness). 
Thus, the operation introduced in (19) permits one to formalize the process of "penetration" of discrete sets through 
sets of greater dimensions; mathematical modeling of this process is frequently necessary in systems analysis. 

It is remarkable that if a p-vector C is concordant with a two-dimensional matrix B with respect to the number 

of rows, then the identity C [] B = C Q B is valid. It is relevant to remark that one of the properties of the penetrating 

face multiplication is its commutativity: A QB = B QA. 
The examples presented above are only a perfunctory illustration of the capabilities of the new types of matrix 

operations. Using these operations, the author has already succeeded in obtaining the Cramer-Rao bounds to estimate 
the potential accuracy of multisignal direction finding, spectral selection, and impulse distance measurement [5, 7], in 
constructing a series of analytical models of conformal digital antenna arrays [4], and also in synthesizing methods 
based on these models for the hyper Rayleigh resolution of point sources. The progress in these domains has been 
in many respects hindered because of the imperfection of the traditional matrix algebra. The author believes that there 

exist other problems in systems analysis whose solution may be supported by the approach proposed. 
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