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ABSTRACT  
Traditional Data Farming (DF) consists of a toolbox of established analysis techniques that are available for 
an analyst-led study of a particular military operation in support of a single decision-maker. Multi-
Dimensional Data Farming (MDDF) is a new and automated analytical process that provides accelerated 
support to military decision-making at multiple scales. At the strategic level, MDDF can inform decision-
makers in planning long timescale campaigns, while at the tactical level, MDDF allows investigation of 
emerging technologies in shorter timescale operations. More importantly, MDDF explicitly addresses the 
interplay between a long timescale campaign and embedded short timescale operations, which is rarely 
tackled in the literature. MDDF extends DF by integrating novel AI techniques (Automated Machine Learning, 
eXplainable AI) and eXtended Reality visualization in an AI agent which automatically investigates the multi-
dimensional parameter landscape and efficiently provides decision-makers with insight into the best, worst 
and most promising Courses of Action. We illustrate our new MDDF approach through a hybrid warfare 
scenario consisting of a Border Operation (interdiction of illegal migrants) embedded within a multi-faction 
(Blue, Red and Green forces) hybrid war campaign. Combining AI techniques exploring operations at multiple 
scales (domain, level, time) and boosting strategic and tactical understanding, MDDF innovates multi-scale 
decision-making. 

1.0 INTRODUCTION 

Data Farming (DF) is the analytical process of exploring a simulation of a real dynamical system in operation 
to infer properties of that system which may inform decisions about its efficient and effective management. 
DF first creates the scenario to investigate and leverages experimental designs, high performance computing, 
analysis, and visualization techniques in pursuit of that goal. Previous research conducted by MSG-088, MSG-
124 and MSG-155 has provided the theoretical underpinnings, proof of concept and software tools to enable 
analysts to conduct DF studies on their system of interest. NMSG Scientific Achievement Award winning 
MSG-088 [1] codified the DF concept for NATO based on the DF Loop-of-Loops (see Figure 1-1). 

 
Figure 1-1: Data Farming Loop-of-Loops. 
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DF typically pursues one of two broad goals, either characterization or optimization. Characterization seeks to 
replace the black-box simulator of the system in operation with a white-box emulator whereby the input-output 
relationship is made transparent. This emulator, or meta-model, provides insight to the analyst regarding causal 
linkages in the system and allows the relative trade-off between varying each input factor to be quantified. 
Optimization, on the other hand, seeks not to understand the functional form of the input-output relationship, 
but to use the meta-model to determine the input factors best settings (i.e., courses of action (COAs)) that drive 
the system’s response to a desired target value. 

In the military context DF allows decision-makers to obtain improved situational awareness and to make more 
informed and robust decisions. Traditional DF is an interactive man-in-the-loop process, in NATO primarily 
to support military decision-making throughout the development, analysis and refinement of COAs, as 
illustrated in Figure 1-2. 

 
Figure 1-2: Data Farming Decision Process. 

But this process is time consuming, even with the software tools developed for the design of experiments, 
analysis, and visualization. Feedback loops lead to re-adjustments and re-processing. However, military 
decision-makers want and need to make decisions fast. Traditional DF only allows partial analyses for large 
multi-scale campaigns with many factions and operations interacting at various levels with each other. An 
innovative approach is needed. MSG-186 Multi-Dimensional Data Farming is extending this research to 
support a multi-model, multi-operation approach to better understand the immense complexity of future 
military hybrid challenges in large campaigns.  

Multi-Dimensional Data Farming (MDDF) automates simulation decision-making by the integration of 
innovative artificial intelligence (AI) techniques and allows improved and faster decisions in highly complex 
multi-scale, multi-domain, and multi-level hybrid war campaigns.  

In Section 2, we demonstrate the traditional DF approach to a tactical-level military operation. In Section 3, 
we illustrate the novel MDDF approach to a multi-scale problem, consisting of a multi-faction, multi-domain 
campaign in which the tactical-level operation has been embedded. Section 4 then outlines the conceptual and 
architectural elements that comprise the Design, Analyse and Visualise Experiments (DAVE) agent which 
underpins MDDF, before providing some summary thoughts in Section 5. 
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2.0 TRADITIONAL DATA FARMING 

NATO defines a hybrid threat as one that combines conventional, irregular, and asymmetric activities in time 
and space, and methods include disinformation, cyber-attacks, economic pressure, deployment of irregular 
armed groups and use of regular forces. Horne and Stilwell list a selection of hybrid warfare actions, grouped 
by intensity level, ranging from legitimate power to acts of war [2]. The migrant crisis on the Belarus-Poland 
border in 2021 has been regarded by European Union (EU) and United States leaders as a hybrid attack. 
Belarusian state-run agencies reportedly organized and encouraged travel from the Middle East and Africa for 
several thousand asylum seekers and migrants, with security forces escorting them to the border [3]. Poland 
reportedly deployed ten thousand soldiers to assist the border guards. As NATO has an extensive land border 
to non-NATO and non-EU states, a Border Operation scenario is an interesting case study for a DF experiment. 

2.1     Border Operation Scenario 
The Border Operation scenario is developed in MANA [4], focusing on a small segment of a fictitious border 
zone with terrain features including roads, fields, evergreen forests, and frozen bodies of water. Migrant agents 
cross the border at various times and if not intercepted, they move deep into Green territory towards a safe 
destination. Green controls its border with a combination of fixed and moving border patrol agents, sensors 
(small UAVs patrolling the border and mini-UAVs organic to some of the border patrols) and fences. Sensor 
detections communicate the position to border patrols, which move to intercept and arrest the detected migrant 
agents. While apprehending migrant agents, they are unable to intercept others, but once completed the patrol 
returns to its earlier position or patrol route. The simulation ends when all non-intercepted migrant agents reach 
the safe Green area. 

The decision factors for the Border Operation are related to the selected border control assets, and the noise 
factors pertain to the migrant agents feature as detailed in Table 2-1. The area to patrol is divided into two 
zones. The measure of effectiveness is the proportion of intercepted migrants.  
 

Table 2-1: The decision and noise factors of the Border Operation. 
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2.2     Characterization and Optimization 
Typical DF meta-models used for characterization are low-order-polynomials (usually up to second order) 
within a general linear modelling framework. However, even with only a moderate number of factors, to fit a 
fully second-order meta-model for the Border Operation DF characterization would lead to an impractically 
large design of experiments. Thankfully, the Pareto principle (or 80/20 rule) often applies in practice, so that 
one may initially employ a first-order meta-model (with a more manageable design size) to identify the subset 
of input factors which critically affect the outcome (both statistically and practically), before fitting a fully 
second-order linear meta-model involving only these critical factors.  

The Orthogonal Latin Hypercube (OLH) and Nearly Orthogonal Latin Hypercube (NOLH) classes of designs 
developed by the SEED Center at the Naval Postgraduate School [5] are often employed in DF studies. Here, 
we illustrate their use on the Border Operation characterization task. One issue with these designs is that they 
are built assuming all the factors are continuous, which necessitates various degrees of rounding to 
accommodate binary or discrete factors, such those of Table 2-1. Another complication is that from the 
tabulated designs, we needed to choose the NOLH for up to 22 factors (and remove two arbitrary columns) 
which yields a design with 129 design points. So, we see that this design selection and generation process is 
cumbersome and very manual in nature.  

Assuming a first-order meta-model, we find that only 5 Green (decision) factors and 2 migrant (noise) factors 
both statistically and practically affect the mean proportion of migrant interceptions. Using the same design to 
fit a fully second-order linear meta-model to these factors further identifies 5 two-factor interactions (e.g., the 
effect of the number of patrols in Zone 2 depends on the value of the interception processing time in Zone 2) 
and 2 quadratic effects (e.g., the effect of the migrant groups’ speed is non-linear), as listed in Table 2-2. The 
magnitude of the factor effect is represented by its meta-model coefficient, and the statistical significance by 
its T-statistic. 

Table 2-2: The second-order meta-model coefficients relating the influential decision and noise 
factors to the mean proportion of migrants intercepted in the Border Operation. 

 

The types of causal linkages underpinning the input-output relationship in the Border Operation are now 
revealed, so that (a) robust optimal capability decisions can be determined - in that two patrols in each zone is 
the most impactful COA (but where the speed of the patrols is not important) and minimizing the interception 
processing time in each zone (perhaps by improved procedures) is the second priority; and (b) a contingent 
optimal capability decision to be identified - in that a larger Zone 2 Mini-UAV sensor range is optimal if there 
are fewer migrant groups and vice versa. Finally, the number of migrant groups, and their speed, both attenuate 
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Green’s effectiveness significantly – more so with migrant speed, though this effect is subject to diminishing 
returns.  

As this example shows, traditional DF can reveal factors of importance to operational commanders, leading to 
more informed tactical decisions in the face of uncertainties and complexities.  

3.0 MULTI-DIMENSIONAL DATA FARMING 

However, the decision problem at the strategic level is the allocation of resources between the Border 
Operation and an ongoing Campaign (we only consider resources applicable in both, such as logistics, sensors 
and C4 systems) where the success of the latter depends (in part) on the success of the former. 

MSG-186 introduced a multi-faction, multi-domain, campaign-level conflict scenario and associated 
simulation incorporating Lanchester and epidemic based modelling [6]. Here, we build on that work by 
addressing the interplay between a long timescale campaign and embedded short timescale operations, and by 
extending DF with novel AI techniques which automatically investigates the multi-dimensional parameter 
landscape and efficiently provides decision-makers with faster insight on various COAs. 

3.1 Hybrid War Campaign Scenario 
In [6] we presented a multi-faction multi-domain combat model called ACE (according to the Attrition, 
Cyber and Epidemic modelling concepts based upon) which describes two armed allied forces, Blue and 
Green, fighting a Red force in both the physical and cyber domains. The Campaign starts with classical 
Lanchester attrition (Blue and Green vs. Red) before Blue suffers a cyber-attack infecting susceptible units 
and reducing their effectiveness. As a countermeasure, all Blue units upgrade their systems over time and 
become immune to the cyber-attack.  

In this paper, Red launches a hybrid operation on Green, by additionally triggering the Border Operation of 
Section 2.1, in support of two strategic objectives: to force Green to divert resources away from the 
Campaign and to lower Green public opinion in support of the Campaign (both thus lowering the chances 
of Campaign success). We embed the Border Operation in the ACE model and illustrate how tactical 
operations may influence Campaign outcomes through MDDF, as illustrated in Figure 3-1. 
 

 
Figure 3-1: Hybrid war scenario used to illustrate Multi-Dimensional Data Farming. 
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3.2 Enhanced Military Decision Making 
We wish to identify COAs that maximize the probability of success of the Campaign, either averaged over 
the settings of noise factors (best COA); given the worst setting of noise factors (worst COA); or given the 
easiest setting of noise factors (most promising COA). The probability of success is defined by 
𝑃𝑃�𝑅𝑅�𝑡𝑡𝑓𝑓� = 0�𝐵𝐵�𝑡𝑡𝑓𝑓� > 0,𝐺𝐺�𝑡𝑡𝑓𝑓� > 0�, where 𝑡𝑡𝑓𝑓 is the annihilation time of Red. This probability is to be 
maximized over all possible COAs (i.e., the decisions factors of Table 2-1), where experiment replications 
may be generated through the noise factors of Table 2-1. The descriptions of the parameters of the ACE 
model are given in Table 3-1, along with the simplifying assumptions made for the following illustration. 

Table 3-1: Parameters of the ACE model [6] and relative assumptions. 

 
 

  
Figure 3-2: Contour plots of the probability of Campaign success (without cyber elements) as a function of 

the effectiveness of the Blue (Green) force against Red and the ratio of the initial Red to Blue forces for: 
(a) 𝛼𝛼0 = 0.2 × 𝑟𝑟𝑔𝑔, (b) 𝛼𝛼0 = 1.2 × 𝑟𝑟𝑔𝑔, (c) 𝛼𝛼0 = 2.2 × 𝑟𝑟𝑔𝑔. 

Figure 3-2 displays the probability of Campaign success without the cyber elements, for values of 𝛼𝛼0equal 
to (a) 0.2 × 𝑟𝑟𝑔𝑔(b) 1.2 × 𝑟𝑟𝑔𝑔and (c) 2.2 × 𝑟𝑟𝑔𝑔 (where we have assumed 𝑟𝑟𝑏𝑏 = 𝑟𝑟𝑔𝑔). The horizontal axis is the 
effectiveness of the Blue force against Red (assumed equal to that of the Green force against Red), while 
the vertical axis is the ratio of the initial sizes of the Red and Blue force. We also assume that the initial 
Green force is one tenth of the Red force as in Table 3-1.  
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This probability increases along the horizontal axis but decreases along the vertical axis. Generally, as 
𝛼𝛼0increases (from left to right), the probability of success increases. This is consistent since 𝛼𝛼0 represents 
the supply that increases the size of the Green force. In (a), the Green force will decrease with time, while 
in (b) the Green force will increase with time. In (c) the combined Green and Blue forces will be more 
effective than the Red force. This case generally ensures Campaign success if the ratio of the Red force to 
that of the Blue force is less than or equal to three as shown in Figure 3-2(c). 

Before we delve into the details of the interplay between the Campaign and the Border Operation, we 
illustrate how this could be done at a conceptual level. Suppose that part of the Green force is diverted from 
the Campaign to the Border Operation. This means that the original 𝛼𝛼0  allocated to the Green force will 
decrease by 𝛿𝛿 > 0 and this amount reallocated to the Border Operation. The greater 𝛿𝛿 is the more successful 
the Border Operation will be. We define the compounded probability of success as the probability of 
Campaign success multiplied by 𝛿𝛿 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚⁄ . Figure 3-3 shows the compounded probability of success as a 
function of 𝛿𝛿  for three cases, 𝑅𝑅0 𝐵𝐵0 = 1,  2,  3⁄ , all with 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 3 × 𝑟𝑟𝑔𝑔. Note that in each scenario there is 
a 𝛿𝛿  that maximizes the compounded probability of success (e.g., the middle curve with 𝑅𝑅0 𝐵𝐵0 = 2⁄  of Figure 
3-3 has a maximum for 𝛿𝛿 = 1.25 × 𝑟𝑟𝑔𝑔). In general, the compounded probability of success increases with 
decreasing 𝑅𝑅0 𝐵𝐵0⁄ . This means that the Blue and Green forces are more successful when there is less Red 
force and it would be possible to divert more Green force to the Border Operation.  

  
Figure 3-3: Compounded probability of success vs. 𝛿𝛿 for 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 3 × 𝑟𝑟𝑔𝑔 and three values of 𝑅𝑅0/𝐵𝐵0. 

This analysis illustrates the type of interplay between the Campaign and the Border Operation. However, 
the actual situation would be more complex as it depends on many factors, such as the time when the Border 
Operation is initiated by Red and its duration, and the number and type of assets allocated to the Border 
Operation.  

To conduct the experiments, we link the inputs and outputs between the Campaign and the Border Operation, 
as follows. Table 3-2 describes a notional cost for each unit increase in an attribute of an asset employed in 
the Border Operation above its minimum value (see Table 2-1), along with a unit cost for each asset. 
Choosing a setting for each of these decision factors within their minimum and maximum values allows a 
total cost for that COA to be determined. For example, the sensor range of the two UAVs is 4km larger than 
its minimum value (of 1km), so the sensor cost for each UAV is 4 times 1, or 4. Similarly, its speed is 20 
km/hr larger than its minimum value (of 10 km/hr), so the speed cost for each UAV is 20 times 0.05, or 1. 
Thus each UAV has a total cost of 15 (5 for its attributes and 10 for the asset) and since there were 2 UAVs 
in this COA, the total cost for the UAV component is 2 times 15, or 30. Finally, to link the different scales 
of the Campaign and Border Operation, we determine the maximum cost COA (by setting all factors to their 
maximum values in Table 2-1, here totalling 662.8) and specify what fraction of 𝐺𝐺0 that is equivalent to 
(e.g., 662.8 might be viewed as equivalent to one-tenth of the initial starting force of Green). 
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Table 3-2: Mapping of the cost of each unit for the 14 decision factors of the Border Operation. 

 

When the Border Operation begins at 𝑡𝑡 = 𝑡𝑡∗ the Green force in the Campaign 𝐺𝐺(𝑡𝑡) = 𝐺𝐺𝑈𝑈𝑈𝑈(𝑡𝑡) + 𝐺𝐺𝐵𝐵𝐵𝐵(𝑡𝑡) is 
partitioned into that force prosecuting the Campaign 𝐺𝐺𝑈𝑈𝑈𝑈(𝑡𝑡) and the resources allocated to the Border 
Operation 𝐺𝐺𝐵𝐵𝐵𝐵(𝑡𝑡). At time 𝑡𝑡 = 𝑡𝑡∗ + 𝑑𝑑𝑑𝑑, the Border Operation concludes, and those resources 𝐺𝐺𝐵𝐵𝐵𝐵(𝑡𝑡) 
allocated to the Border Operation return to the Campaign. The final linkage from the Border Operation to 
the Campaign is the function 𝛼𝛼 = 𝛼𝛼(𝑡𝑡,  𝑝𝑝𝑁𝑁) entering the Green equation of the ACE model [6]:  

Here, 𝑝𝑝𝑁𝑁 is the percentage of non-intercepted migrants at the end of the Border Operation, 𝛼𝛼0 is the 
parameter of Table 3-1 and 𝛾𝛾 = 1.2.  This function encodes the Green public opinion which decreases as the 
percentage of non-intercepted migrants increases indicating that the supply rate of Green to the Campaign 
diminishes if the Border Operation is getting unsuccessful. 

3.3 Accelerating Automation 
While Latin Hypercube designs have grown in popularity for DF studies, a newer class of design – 
specifically suited for the two-stage meta-modelling process illustrated above – has been developed. 
Definitive Screening Designs (DSDs) [7] only require three levels at most for each factor and are more 
efficient than competing Latin Hypercube designs. For the Border Operation, it suffices a DSD with only 
50 design points rather than the NOLH with 129 design points. Also as indicated in Section 2.2, low-order 
polynomial linear meta-models have been common in DF due to their ease of interpretation. Machine 
Learning (ML) models, such as Random Forests and Neural Networks, are often considered black-box 
models because it is not easy to understand how they map inputs to outputs. Still, black-box models have 
been shown to be powerful predictors, creating a trade-off between interpretability and performance. Now, 
advances in eXplanable AI (XAI) allow a broader range of DF meta-models to be considered without 
sacrificing interpretability [8]. When additionally coupled with automated ML (autoML), it is possible to 
increase the level of automation in building meta-models within a DF process [9]. These newer designs, 
more sophisticated meta-models, and increased automation underpin the science of MDDF, and will 
enhance the analyses that will be possible.  
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To illustrate, we use autoML to train, tune, and test four different families of models for predicting the mean 
proportion of migrant interceptions in the Border Operation using the DSD data. Figure 3-4 summarizes the 
predictive performance using two metrics, mean absolute error (MAE) and root mean squared error (RMSE), 
and the variable importance for each model. Here, the variable importance is an example of XAI and 
indicates which decision factors (df1-df14) and noise factors (nf1-nf6) have the greatest influence on the 
proportion of migrant interceptions. The models tended to identify the same top 7 factors, of which 6 are as 
in Table 2-2. A Gradient Boosting Machine (GBM) had the best performance (lowest error) followed by a 
Generalized Linear Model (GLM). Therefore, autoML does not necessarily exclude interpretable models 
(e.g., GLM) from consideration. Instead, autoML is introduced within DF to efficiently consider multiple 
types of models and automatically select the highest performing model. Additionally, black-box models do 
not require that a functional form be known or specified, which is advantageous in scenarios where there is 
limited intuition about the nature of the input-output relationship. 

 

Figure 3-4: Summary of autoML results for the Border Operation based on a DSD. Four families of meta-
models were considered - fixed grid of Generalized Linear Models (GLMs), fixed and random grid search of 

Gradient Boosting Machines (GBMs), Default Random Forest (DRF), and Extremely Randomized Trees (XRT). 

Another approach to employ ML models in DF is the application of Bayesian optimization techniques [10] 
as a sequential design strategy. While the DSD design uses substantially fewer design points than the NOLH 
design, conducting further experiments on demand might be desirable, which are likely to improve the 
quality of the meta-models. Bayesian optimization offers a framework to find optima of black-box functions 
(such as response functions from DF experiments) that are difficult to evaluate due to their computational 
costs. The objective function is assumed to be unknown, while enough information is available to place a 
prior distribution over it. Experiment points or function evaluations are treated as data points, which are 
used to generate the posterior distribution of the objective function. Further, an acquisition is introduced, 
which is used to determine the next experimental points. The most common method to define the 
prior/posterior pairs are Gaussian Processes (GPs) [11]. 

Since the methodology's core is comprised of a GP fitted to the experimental data, we illustrate the results 
of fitting a GP to the available DSD dataset, below. The factors used were obtained by an initial sensitivity 
analysis, and 4 of 7 are the same as in Table 2-2. The hyperparameter tuning was carried out using cross-
validation and choosing the best-performing combination. Figure 3-5 shows the model's overall 
performance, which received an 𝑅𝑅2 of 0.99 on the training data and an 𝑅𝑅2 of 0.63 on the test data, while 
Figure 3-6 displays what are known as partial dependence plots (another example of XAI) associated with 
each factor, which can be used to compare and contrast with the second-order meta-modelling results in 
Table 2-2. 
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Figure 3-5: Performance plot of the GP fitted to the DSD experiments.  

 

 
Figure 3-6: Partial dependence plots for the factors used in the GP meta-model. 

4.0 DESIGN, ANALYZE, AND VISUALIZE EXPERIMENTS (DAVE) 

The multi-run execution loop of DF comprises the design of experiments, high performance computing, 
analysis and visualization. The exploitation of newer autoML and Bayesian optimization techniques allows 
one to accelerate the building of meta-models within the loop-of-loops DF process, and hence, to identify 
faster the best, worst and most promising COAs in multi-faceted scenarios. Figure 4-1 depicts the overall 
concept of the Design, Analyze and Visualize Experiments (DAVE) agent, in the context of the hybrid warfare 
scenario used in this paper. This AI agent will automatically investigate the multi-dimensional parameter 
landscape and optimize the probability of success of the Campaign while being cognisant of both the resource 
tension and negative consequences of a poorly managed Border Operation. DAVE is an AI agent which will 
efficiently provide decision-makers with actionable insight. 
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 Figure 4-1: High-level illustration of the concept for the Design, Analyze and Visualize Experiments agent. 
 

4.1 Architectural Overview 
The technical implementation aims to develop a Demonstrator for the AI-based methodologies described 
above, reaching Proof-of-Concept (PoC) status in 2023 and extended and examined in detail during the 
CWIX Exercise in 2024. As during the PoC, the goal is more on creating a robust system and working 
processes, during CWIX in 2024 also the possibilities of an extended explainability of DAVE using 
eXplainable AI and eXtended Reality technologies as usability testing will be more in focus. The analytical 
objective is to develop an AI-based assistant able to conduct DF experiments and optimization tasks on an 
automized basis. As shown in Figure 4-2 DAVE is intended to act in the user environment of a DF Analyst 
and support them in their analysis tasks.  

 

Figure 4-2: Architectural Overview of the MSG-186 Demonstrator of DAVE connected to a DFS-instance. 
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The technical implementation of DAVE is based on the Data Farming Services (DFS) architecture 
developed by MSG-155 [12]. DFS acts as a DF engine for the overlying elements and supports the AI-based 
methodologies implemented in DAVE. Figure 4-2 illustrates the Demonstrator as a DFS-instance, 
containing all business services needed to conduct standard DF experiments, as well as the simulation 
MANA (operational level) and ACE (campaign level). The DFS-instance is accessible via REST-API based 
on a data model for all business objects agreed by MSG-155. DAVE implementation, based on this data 
model, can now execute single simulation runs up to complete automized DF experiments. This supports 
AI-based methodologies like screening or Bayesian optimization. 

4.2 Analysis Workflow 
As DAVE is intended to automatically perform analyzation and optimization tasks, we propose an architecture 
which consists of a classical layered software design (see Figure 4-3). 

  

Figure 4-3: DAVE software architecture with functional element blocks and connection to the DFS-instance. 
 

Important is the dashboard functionality in the frontend, which enables the user to monitor the automized 
process of DAVE. The backend uses AI-based meta-modelling techniques to automatically perform DF 
experiments in a sequential manner. Furthermore, the optimization engine will be backed by configurable and 
exchangeable optimization strategies, to adapt DAVE on different use cases. DAVE itself will work internally 
based on the DFS data model extending it by metadata needed for the internal optimization and modelling 
elements. 

The Demonstrator Use-Case will use DAVE for the following analysis workflow: (1) Execute single ACE 
simulation runs at campaign level. (2) Identify decisive point(s) in simulation results and derive optimization 
goal with relevant parameters. (3) Map parameters from campaign to operational level, configure optimization 
strategy and start DF experiment. (4) Automatically conduct iterative DF experiment with optimization 
strategy and derive optimal parameter setting using AI-based meta-modelling. (5) Map optimal parameter 
setting back to campaign level, adapt ACE simulation and analyse/visualize result changes. 
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5.0 SUMMARY 

Our work serves as a proof of concept of the ACE framework. That is, we describe for the first time the 
interplay of a long-time scale campaign and a short-time scale operation. We show the complexity that arises 
in terms of time, sharing of resources and domains involved. This is a first attempt to understand how one 
can win a battle (operation) but lose a war (campaign) if we divert too many resources to the operation. We 
illustrate through MDDF how it is possible to combine AI techniques exploring operations at multiple scales 
(domain, level, time) and optimize the probability of winning the campaign, even with the burden of a border 
operation, by selecting the correct resource allocation scheme. From the modelling perspective, we introduce 
a new multi-model approach to couple simulation models of different aggregations that allow more 
comprehensive multi-level military planning and decision-making. 
 
In reality, a campaign is coupled with not one operation but many of them and of many types. The sheer 
complexity of such a prospect is an interesting one. There are two general directions for future work. The 
first is the further development of tools and techniques underpinning MDDF to boost strategic and tactical 
understanding, The development of MDDF allows us to accelerate the automation process making it 
efficient and effective in analysing large and complex multi-dimensional data spaces. Our AI driven 
automation may extend the application of MDDF to wargaming as a resource and time efficient simulation 
support in wargaming in domains like mission support or training and education.  
 
The second is to understand the nature of war: when we fail why we fail. This will make our world a better 
and safer place. 
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