

ЦКБ Коралл

Міністерство освіти і науки, молоді та спорту України Севастопольський національний технічний університет

Присвячується 60-річчю Севастопольського національного технічного університету

СУЧАСНІ ПРОБЛЕМИ РАДІОТЕХНІКИ ТА ТЕЛЕКОМУНІКАЦІЙ «РТ - 2011»

Матеріали 7-ої міжнародної молодіжної науково-технічної конференції

(Севастополь, 11 — 15 квітня 2011 р.)

Современные проблемы радиотехники и телекоммуникаций «РТ - 2011» Материалы 7-ой международной молодежной научно-технической конференции

Modern Issues in Radio Engineering and Telecommunications «RT - 2011»

Materials of the 7-th International Young Scientist Conference

Севастополь 2011

УДК 621.37+621.317+537.86 ББК 32.84 С92

Науковий редактор Гімпілевич Ю.Б., д-р техн. наук, професор

Редакційна колегія:

Пашков Є.В., д-р техн. наук, професор, ректор СевНТУ — головний редактор; Лук'янчук О.Г., канд. техн. наук, доцент, перший проректор СевНТУ — заст. головного редактора; Гімпілевич Ю.Б., д-р техн. наук, професор, завідувач кафедрою;

Савочкін О.А., канд. техн. наук, доцент;

Афонін І.Л., д-р техн. наук, професор;

Михайлюк Ю.П., канд. техн. наук, доцент;

Тищук Ю.М., асистент.

Сучасні проблеми радіотехніки та телекомуніся кацій «РТ - 2011»: Матеріали 7-ої міжнар. молодіжної наук.-техн. конф., Севастополь 11 — 15 квітня 2011 р. / М-во освіти і науки, молоді та спорту України, Севастоп. нац. техн. ун-т; наук. ред. Ю.Б. Гімпілевич. — Севастополь: СевНТУ, 2011. — 479 арк.

ISBN 978-966-2960-93-8

Збірник містить матеріали, присвячені теоретичним і практичним питанням сучасної радіотехніки та телекомунікацій.

УДК 621.37+621.317+537.86 ББК 32.84

Мальченко В.Л. Электромагнитная совместимость системы сотовой связи стандарта CDMA и системы цифрового наземного телевидения DVB-T в диапазоне 800 МГц	394
Avdeyonok Y.I. Methods for predicting the fading and enhancement due to multipath required for the design of terrestrial line-of-sight systems	395
Голубева А.К., Макагон В.П., Литвиненко Л.В. Заземление как источник возникновения мощных электромагнитных помех	396
Достанко А.П., Гринчик Н.Н., Спресов И.Н. Моделирование физико-технологических процессов формирования микро- и нано-структур при воздействии плазмы инертных газов	397
Васильченко М.И., Дорошкевич А.Г., Томаль В.С. Оборудование для обработки круп- ногабаритных оптических деталей	398

СЕКЦИЯ 8

КОМПОНЕНТНАЯ БАЗА РАДИОЭЛЕКТРОНИКИ И ТЕЛЕКОММУНИКАЦИЙ

\	пюсар Д.В., Слюсар В.И. Конструктивный синтез наноантенных решеток в составе наносхем беспроводных сетей на кристалле	400
	Вашуров А.Ю., Телеш Е.В. Формирование пленок нитрида кремния осаждением из высокоэнергетичных ионных пучков	401
	Белевич В.В., Калесник Р.В. Быстродействующая система токовой защиты для источников питания электротехнологических установок	402
	Марчук О.В., Свирская Е.В. Схемотехнические характеристики блока питания магнетрона в составе СВЧ плазмохимической установки	403
	Рузова М.В., Грядун В.И. Проектирование МДП-транзистора с углеродной нанотрубкой в качестве его канала	404
	Стронський В.В., Гаврасієнко П.О. Оцінка ефективності схемотехнічних рішень спрямованих на усунення впливу «логічних змагань» в логічних елементах з функціональним надлишком	405
	Левданский Д.Д. Методология обеспечения надежности радиоэлектронных компонентов	406
	Черепнин А.О. Способ контроля технологического процесса изготовления устройств на НПЛ	407
	Ковальчук Н.С. Диэлектрические мембраны с локально пассивированными резистивными пленками	408
	Манченко Л.В., Пчелин В.А, Трегубов В.Б. Внутрисогласованный транзистор для активных фазированных антенных решеток нижней части X-диапазона	409
	Корчагин И.П., Манченко Л.В., Пчелин В.А. Внутрисогласованный транзистор для активных фазированных антенных решеток верхней части X-диапазона	410
	Гуревич О.В., Телеш Е.В. Формирование диэлектрических покрытий прямым осаждением из ионных пучков	411
	Воробьев А.А. Об использовании стоп-слоя для уменьшения теплового сопротивления мощного СВЧ транзистора	412
	Воробьева Е.В. Моделирование и оптимизация конструкции диода Шоттки для защитного устройства	413
	Скорик И.В., Дурманов М.А. Многодиапазонный усилитель мощности	414

КОНСТРУКТИВНЫЙ СИНТЕЗ НАНОАНТЕННЫХ РЕШЕТОК В СОСТАВЕ НАНОСХЕМ БЕСПРОВОДНЫХ СЕТЕЙ НА КРИСТАЛЛЕ

Слюсар Д.В., Слюсар В.И. Научный руководитель: д-р техн. наук, проф. Слюсар В.И. Центральный научно-исследовательский институт вооружения и военной техники Вооруженных Сил Украины ул. Драгоманова, 27, г. Киев, 02068, Украина Тел.: +38 050 4436317; e-mail: swadim@inbox.ru;

Abstract — The conceptual basics of construction design of nanoantennas array as a part of multilayered nanonodes for realisation of wireless networks on the chip (WiNoC) on the basis of technologies MIMO and MultiUser MIMO is considered.

1. Введение

Важным направлением развития систем на кристалле (SoC) стало создание беспроводных сетей на чипе (Wireless Network on Chip, WiNoC) [1]. С учетом совершенствования технологий многослойной эпитаксии для изготовления наносхем при создании WiNoC следует использовать возможности трехмерных топологий конструирования приемо-передающих наноантенных решеток. В докладе представлены концептуальные основы конструктивного исполнения вертикально расположенных решеток нанонтенн в составе наносхем, реализующих беспроводную передачу данных в сети на кристалле.

2. Основная часть

При многослойной топологии наносхем для повышения эффективности рассеяния радиоволн в интересах применения технологии МІМО заслуживает внимания использование пирамидальных конструкций наностанций. При этом могут быть задействованы кольцевые, прямоугольные либо многогранные пирамидальные формы, в которых нановибраторы располагаются на вертикальных стенках пирамидального слоя (рис. 1).

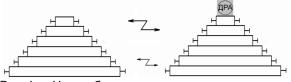


Рис. 1 — Нановибраторы в составе пирамидальных наносхем

Такое размещение элементов антенн на наносхеме позволяет убрать затенение наностанциями друг друга и улучшает условия рефракции радиоволн внутри корпуса SoC. Наверху пирамиды для связи с макроуровнем могут размещаться диэлектрические резонаторные антенны (ДРА) либо другие разновидности объемных электрически малых излучателей, а также печатные антенны.

Следует отметить, что для реализации высокоскоростной передачи в системе МІМО достаточно сформировать (4...8) слоев нанопирамиды, хотя, если скорость передачи не является критичной, достаточно ограничиться и парой слоев.

Частотное или временное мультиплексирование сигналов в МІМО-наносхемах может быть дополнено поляризационным разделением каналов, для чего следует применять наноантенны двойной поляризации, например, турникетные нановибраторы.

Реализация вертикального размещения нановибраторов сопряжена с определенными технологиче-

скими трудностями, поэтому предпочтительнее использовать вертикально-горизонтальное размещение элементов нанорешеток, применив, например, на пьедесталах пирамиды горизонтально расположенные единичные вибраторы либо малоэлементные наноантенны Уда-Яги (рис. 2).

Рис. 2 — Горизонтально-расположенные наноантенны Уда-Яги в составе вертикальных решеток наноизлучателей

Протяженность уступа пирамиды для размещения наноантенны Уда—Яги зависит от длины волны излучения, межэлементного расстояния вибраторов в антенне и их количества. Так, при частоте несущей сигналов 100 ТГц и полуволновом расположении элементов в решетке Уда—Яги межэлементное расстояние между излучателями будет равно 1,5 мкм. В случае четырех элементов в составе наноантенны необходимо обеспечить длину пьедестала в горизонтальной плоскости не менее 8 мкм.

На несколько слоев может устанавливаться одна общая наноантенна. Например, при 6-слойной топологии можно использовать двухуровневую пирамиду, в которой каждый из уровней образован тремя слоями, а наноантенна располагается в центральном из них. В результате получим два излучателя в вертикальной плоскости. В зависимости от толщины слоя на один уровень при современных технологиях может приходиться от двух до 4 слоев. В случае полуволнового шага элементов решетки в вертикальной плоскости при частоте 100 ТГц толщина уровня пирамиды должна быть 1,5 мкм, что при 3-слойной его эпитаксии приводит к допустимой толщине одного слоя топологии наносхемы 500 нм. Выполнение данного требования при нынешнем уровне развития технологий не является сложным.

3. Заключение

Предложенный метод формирования вертикальных решеток наноантенных элементов позволяет повысить скорость передачи данных за счет использования многоэлементных антенных конструкций. Их совершенствование, а также электродинамическое моделирование являются предметом дальнейших исследований.

4. Список литературы

[1] Pande P.P. Hybrid Wireless Network on Chip: A New Paradigm in Multi-Core Design/P.P. Pande, A. Ganguly, K. Chang, Ch. Teuscher // Proc. of «NoCArc 2009», New York, 12 Dec. 2009. — New York, 2009. — P. 71 — 76.

Наукове видання

«Сучасні проблеми радіотехніки та телекомунікацій «РТ - 2011»

Матеріали 7 міжнародної молодіжної науково-технічної конференції (Севастополь, 11—15 квітня 2011 р.)

Відповідальний за видання Фалалеєв А.П., канд. техн. наук, доцент, проректор з наукової роботи СевНТУ

Технічний редактор Л.А. Кареліна Нормоконтролер І. О. Черевкова Комп'ютерний набір і верстка М.А. Дурманов,

О.Г. Лук'янчук, О.А. Савочкін, О.О. Редькіна, Ю.М. Тищук, О.О. Юпіков.

Формат 89×124М/16. Ум. друк. арк. 61,07. Тираж 200 прим. Зам. № 10.

Видавець — Севастопольський національний технічний університет (СевНТУ) Адреса: вул. Університетська, 33, м. Севастополь, 99053.

Свідоцтво суб'єкта видавничої справи серія ДК №1272 від 13.03.2003.

Типографія «DigitPrint», ул. Сенявина, 1, оф. 304, г. Севастополь, тел. (095) 850-50-28. E-mail: DigitPrint@gmail.com