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A Two-Tape Design of Metamaterial 
Based on a Quasi-fractal Approach 

Vadym Slyusar and Ihor Sliusar 

Abstract Various options for the 3D design of a metamaterial cell based on two-
ribbon split rings have been proposed and studied. When synthesizing the geometry 
of the outer tape, a quasi-fractal approach was used, which made it possible to form 
periodic sequences of depressions (slots) in its end surfaces. Their alternation from 
both ends of the tape was carried out synchronously or in a checkerboard pattern. In 
this case, the depth of all grooves could be fixed or changed according to a certain law. 
An Ansys HFSS electromagnetic simulator was used to study the properties of the 
proposed metamaterial cell designs. In the course of the research, the main attention 
was paid to determining the frequency ranges in which the dielectric permittivity and 
magnetic permeability take negative values (double-negative (DNG) zones). When 
a square conductor oriented perpendicular to the plane of the rings is included in the 
metacell, a relative bandwidth was achieved in the low-frequency zone, in which the 
condition of negative values of the dielectric permittivity and magnetic permeability 
is observed. The relative frequency band of the DNG zone in this case is 185.22%. 

Keywords Ansoft HFSS · Quasi-fractal ·Metamaterial · Refractive index ·
Relative permittivity and permeability · Split-ring resonator (SRR) 

1 Introduction 

The entry of humanity into the Internet of Things era has significantly expanded 
the range of tasks solved using wireless access technologies [1]. At the same time, 
taking into account the mobility of users of telecommunication services, preference
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is given to compact solutions. Regardless of the frequency range used, the main ways 
to achieve miniaturization are, first of all, the use of electrically small antennas [2], 
as well as the use of metamaterials [3–8]. 

Since the elementary cells of a metamaterial in many cases have multi-component 
structures, the known set of approaches to the synthesis of such can be extended by 
passing to the 3D topology of their constituent elements [9–12]. 

2 The Aim of Research 

The purpose of the report is to study the electromagnetic parameters of 3D SRR 
structures, in which the constituent elements are modeled on the basis of quasi-
fractals. 

3 The Main Results of the Study 

The use of fractal solutions in radio engineering has been sufficiently tested and has 
proven itself on the positive side [13]. A similar approach can also be applied to the 
synthesis of metamaterial cells. In this work, the study of cells on a quasi-fractal 
basis was carried out in several stages. At the first of them, the object of analysis was 
two-ribbon split rings without a conductor, with end grooves in the outer tape. At the 
same time, the inner tape did not have such cutouts in its end surfaces. The grooves 
in the outer tape were obtained on the basis of the meander fractal initiator of the first 
iteration [1, 14]. The corresponding quasi-fractal technology used to synthesize the 
outer ring is based on the technique described in [15, 16]. The principle of groove 
formation is explained in detail in Fig. 1 [16]. 

It should be noted that double rings without a conductor make it possible to obtain 
zones of negative magnetic permeability that are broadband in frequency. This makes 
it possible to use them, for example, to form absorbers or magnetic metalenses. 

The well-known Ansys HFSS simulator [17, 18] was used to study the electro-
magnetic properties of various options for the design of metamaterial cells. The 
3D topology designer built into it made it possible to implement the configuration

Fig. 1 Principle of 
formation of quasi-fractal 
grooves in the outer tape 
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shown in Fig. 1 method of forming end surfaces in the outer tape. The total number 
of grooves, similarly to [16], was set to 24, and they were located with a uniform 
step around the circumference with an angular interval of 15°. 

To ensure the possibility of comparison with the previously obtained results, the 
geometric parameters of the metacell ribbon were set as follows: the thickness of the 
ribbons was 3 mm, the width was 9 mm, and the interval between the ribbons was 
equal to their thickness and was also 3 mm. The radius of the outer surface of the 
outer tape was 23.55 mm. The tapes were immersed in a vacuum. 

Figure 2 shows a variant of the metacell design, in which the cuts in the tapes are 
located on the vertical Z-axis. The simulation results of this design (Fig. 3) indicate 
the existence of many frequency ranges in which the relative magnetic permeability 
is negative. At the same time, there are also so-called binegative zones, within which 
not only the magnetic but also the dielectric permittivity becomes negative (Re(ε) <  
0 and Re(μ) < 0). Since it is these zones that are of the greatest interest, let us analyze 
the effect of various parameters of the metacell geometry on them. The calculation 
of ε and μ values will use the special macros that are embedded in HFSS [12]. 

It should be noted that in the considered version of the outer tape, the depth of 
the grooves was constant along the entire length. At the same time, the grooves 
themselves from different ends of the outer tape were arranged in a checkerboard 
pattern. Next, we study the influence of the variable depth of the grooves, for example, 
when the cuts of the rings lie in the horizontal plane (Fig. 4), and the grooves on the 
end surfaces of the outer tape are symmetrical.

Efforts made to vary the design of the metacell made it possible to achieve the 
appearance of the DNG band in the range of 640–950 MHz (Fig. 5).

A variant of the horizontal arrangement of rings (Fig. 6) was also studied, which 
is a typical case in the formation of metalenses.

Fig. 2 Appearance of the 3D SRR model from different view angles
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Fig. 3 Evaluation of the characteristics of the SRR model on Fig. 2, solid—Re(ε); dash—Re(μ)

Fig. 4 Vertical orientation option of the SRR model on Fig. 2

At a variable depth of the grooves, the DNG section shifted to the regions of 7.0– 
7.7 and 7.9–9.25 GHz (Fig. 7), while the zone of negative magnetic permeability 
values covers a continuous region starting from about 5.3 GHz and beyond 10 GHz. 
The latter testifies to the prospects of using such structures for constructing magnetic 
metalenses, for example, for electron microscopes, naturally, provided that the sizes 
of metarings are scaled in accordance with a given wavelength.

At the end of the first stage of research, a variant of the ring structure with an 
external tape in the form of a meander was considered (Fig. 8) [15].

For this design, the area of negative permeability of interest is concentrated in the 
low-frequency range up to about 1.4 GHz (Fig. 9).

In the second stage of research, a transition was made to the combination of 
split rings and a straight conductor, traditional for metacells, taking into account 3D 
design. An example of this kind is shown in Fig. 10, while the slot in the outer ring 
is at the top of the Z-axis, and the center of the cross-section of the conductor is 
located at a distance of 4 mm from the center of symmetry of the rings. The grooves 
in the upper band varied in depth according to a sinusoidal law. Such a change in
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Fig. 5 Emergence of the DNG band in the range of 640–950 MHz, solid—Re(ε); dash—Re(μ)

Fig. 6 Metacell with the 
horizontal orientation

the meander depth is an approximation of the second iteration of the meander-based 
quasi-fractal.

An important achievement of this design (Fig. 11) was the appearance of a low-
frequency range with simultaneously negative values of permittivity and permeability 
in the region of frequencies from 100 to 336 MHz (100 MHz is the lower limit of 
calculations).

An important achievement of this design (Fig. 11) was the appearance of a low-
frequency range with simultaneously negative values of permittivity and permeability
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Fig. 7 DNG metacell properties; the solid line is Re(ε); the dashed line—Re(μ)

Fig. 8 Quasi-fractal SRR with an outer band in the form of a meander

Fig. 9 DNG of the SRR in Fig. 8, solid—Re(ε); dash—Re(μ)
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Fig. 10 Appearance of a 3D model of a metacell with a rectangular conductor

Fig. 11 DNG in the low-frequency region from 100 to 336 MHz, of the metacell in Fig. 10, 
solid—Re(ε); dash—Re(μ)

in the region of frequencies from 100 to 336 MHz (100 MHz is the lower limit of 
calculations). 

The performed analysis confirmed the insignificance of the influence of the 
distance of the conductor from the surface of the rings on the width of the DNG 
range in the low-frequency region. In particular, an increase in this distance from 4 
to 10 mm shifted the upper limit of the specified range to 342.6 MHz.
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Fig. 12 Metacell vertical orientation option 

A more significant result regarding the influence of the length of the low-frequency 
zone DNG made it possible to obtain an alternative variant of changing the design 
of the metacell, which consists of the vertical turn of the wire and the location of the 
cuts of the tapes in the horizontal plane (Fig. 12). 

As can be seen from Fig. 13, the transition to a vertical wire extended the upper 
limit of the DNG zone in the low-frequency region to 647 MHz. At the same time, 
the second DNG zone was localized in the region of 4.65–5.15 GHz (Fig. 14).

Summarizing the results of the second stage, we can draw intermediate conclu-
sions. In particular, in order for the DNG zone to be in the lower frequency region, 
it is necessary to place the cut in the outer tape at the top of the Z-axis or in the 
horizontal plane. The location of the cut in the outer ring on the Z-axis from below 
leads to the disappearance of DNG in the low-frequency region. 

Since the vertical orientation of the conductor may have certain errors, it is of 
interest to study the influence of the angles of its deviation from the vertical axis. 
In particular, the limiting case of conductor deviation from the vertical by 45° was 
considered (Fig. 15). At the same time, the slots in the tapes were placed on the 
vertical axis.

The result of such manipulations was the narrowing of the band of the binegative 
zone to 340 MHz. The lion’s share in such a deterioration in the properties of the cell 
was made not by the deflection of the conductor, but by the turn of the rings to align 
the slots with the vertical axis. Therefore, we can conclude that in order to maximize 
the expansion of the lower DNG strip in the case under consideration, it is necessary 
to place cuts in the ribbons in a horizontal plane. The deviation of the conductor from 
the vertical at an angle of up to 45° does not affect significantly (Fig. 16).

The next stage of the research consisted of the transition to a conductor located, 
similarly to [12], perpendicular to the plane of the rings (Fig. 17).

At the same time, the grooves in the uppercut tape at both ends had a variable 
depth and were located in a synchronous manner; that is, the grooves from opposite 
ends were opposite each other. An important nuance was also that the sections of the 
tapes lay in a horizontal plane.
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Fig. 13 DNG metacells in Fig. 12 and its band in the lower frequency region (100–647 MHz), 
solid—Re(ε); dash—Re(μ) 

Fig. 14 Localization of DNG in the band of 4.65–5.15 GHz, solid—Re(ε); dash—Re(μ)

As a result of this modification of the metacell design, there was a significant 
expansion of the DNG bandwidth at lower frequencies, ranging from 25.02 MHz to 
about 652 MHz (Fig. 18). This corresponds to 185.22% when converted to a relative 
frequency value according to the fractional bandwidth formula [19–21]: 

δF = 2| f1 − f2| 
f1 + f2 (1)
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Fig. 15 Metacell with conductor rotated by 45°

Fig. 16 DNG metacells in Fig. 15 and its low-frequency band, solid—Re(ε); dash—Re(μ)

where f 1 and f 2 are the values of the frequencies at which Re(ε) < 0 and Re(μ) < 0.  
There are also DNG bands in the ranges from 3.25 to 3.7 GHz and from 4.1 to 

5.05 GHz (Fig. 19). Another of these zones is in the range of 8.25–8.75 GHz (Fig. 20).
Thus, the turn of the conductor perpendicular to the plane of the rings (top design), 

proposed in [12], is an effective solution that led to the expansion of the bandwidths 
in the corresponding DNG bands.
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Fig. 17 Modification of a metacell with a rectangular conductor

Fig. 18 Lower DNG zone metacell in Fig. 17, solid—Re(ε); dash—Re(μ)

Fig. 19 Central DNG zone metacell in Fig. 17, solid—Re(ε); dash—Re(μ)
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Fig. 20 Upper DNG zone metacell in Fig. 17, solid—Re(ε); dash—Re(μ)

As expected, with a vertical arrangement of the conductor and a horizontal 
arrangement of the rings (in the X0Y plane, Fig. 21), similarly to Fig. 6, the DNG 
band disappears in the low-frequency region (Fig. 22). 

Fig. 21 Horizontal metacell orientation in Fig. 17 

Fig. 22 Evaluation of the characteristics of the metacell model in Fig. 21, solid—Re(ε); dash— 
Re(μ)
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However, in this case, if the conductor is placed horizontally, parallel to the plane 
of the rings, as shown in Fig. 23, then the specified low-frequency section is restored 
(Figs. 24 and 25). At the same time, its width becomes relatively smaller (0.1– 
0.44 GHz, Fig. 25). At the same time, the DNG bandwidth in the region of 7.05– 
7.75 GHz is 700 MHz (Fig. 26). If, however, the conductor is placed in the intra-
annular space (Fig. 27), then regardless of its orientation relative to the cuts in the 
rings, the low-frequency range of the DNG disappears. 

At the final stage of research, attention was paid to variants of the metacell design, 
with a conductor perpendicular to the plane of the rings and with cuts in the tapes 
located on the vertical axis (Figs. 28 and 29).

If we set the width of the cut equal to the width of the cross-section of the conductor 
(2.5 mm), then when the cuts are located on the Z-axis, the DNG region in the low-
frequency region will disappear (Fig. 30). At the same time, the DNG region is 
preserved in the region of 4.8–6.35 GHz.

The deviation of the cut in the upper ring from the Z-axis in this case leads to the 
restoration and expansion of the band of the low-frequency section of the DNG as 
the cuts deviate from the vertical position. 

The maximum strip in this design option is achieved when the cuts are located in 
a horizontal plane (deviation 90° from the Z-axis). At the same time, the presence

Fig. 23 Horizontal metacell orientation in Fig. 10 

Fig. 24 DNG metacell in Fig. 23, solid—Re(ε); dash—Re(μ)
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Fig. 25 Lower DNG zone (0.1–0.44 GHz) metacell in Fig. 23, solid—Re(ε); dash—Re(μ) 

Fig. 26 Upper DNG zone metacell in Fig. 23, solid—Re(ε); dash—Re(μ) 

Fig. 27 Placement of the conductor in the annular space of the metacell

of a low-frequency DNG section at 45 and 90° angles of the cut from the Z-axis 
depends on the width of the cut in the ring.



A Two-Tape Design of Metamaterial Based on a Quasi-fractal Approach 689

Fig. 28 Metacell layout with ring cuts along the vertical axis

4 Perspectives of Further Research 

The presented results were achieved within the framework of the initial stage of 
generalization of the quasi-fractal approach for SRR synthesis. 

Further research should be directed to studying the possibility of expanding the 
low-frequency zone and obtaining more broadband DNG solutions in other parts of 
the spectrum. In this regard, the use of sequences of grooves not only in the outer, 
but also in the inner tape, as well as the search for the optimal combination of their 
geometric shapes and parameters, deserves attention. In particular, of interest is the 
use of not only meander lines, but also other geometric figures as the initiator of 
quasi-fractals, and the study of the influence of dielectric fillers in the intercellular 
and intra-annular spaces. Further research, of course, will be aimed at preserving the 
properties of an elementary cell as much as possible in the environment of similar or 
other elementary cells in the composition of a multi-cell metamaterial. At the same 
time, not only the influence of the parameters of the relative position, but also the 
mutual orientation of the metacells in a space will be investigated. 

5 Conclusions 

The presented results testify to the efficiency of the quasi-fractal approach to the 
synthesis of metamaterial cells. Among the many variants of the studied SRR, the 
best solution in terms of the width of the frequency range, in which the condition of 
negative dielectric permittivity and magnetic permeability is observed, is the use of a 
conductor oriented perpendicular to the plane of the rings. In this case, the grooves on 
both ends of the outer tape had a variable depth and were arranged in a synchronous 
manner. An important nuance is also that the cuts of the tapes lie in a horizontal 
plane. The indicator of the relative frequency band of the DNG zone achieved in this 
case was 185.22%. In this sense, the use of a two-ribbon structure as the basis of
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Fig. 29 Fields E and H of the metacell on Fig. 28

a metamaterial cell makes it possible to obtain a wider relative frequency band in 
comparison with the options for using them as an antenna (in [15], the same indicator 
did not exceed 132%).



A Two-Tape Design of Metamaterial Based on a Quasi-fractal Approach 691

Fig. 30 DNG metacell in Fig. 28, solid—Re(ε); dash—Re(μ)
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