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NEURAL NETWORK METHOD 
FOR INVESTIGATION SPECTRAL 
CHARACTERISTICS

This article considers the problem of radio signal clas
sification based on spectral features formed from complex 
low-frequency signal samples (in-phase and quadrature 
components). The main goal of the research is to build 
a single machine learning model capable of effectively 
identifying the type of signal by its spectral characteristics. 
The signal is represented using the power spectral density 
(PSD), calculated by the Welch method, as well as additional 
statistical and frequency-energy features that reflect the 
amplitude-phase structure of the signal. The model structure 
is proposed and the processes of its training, validation 
and testing are implemented. An analysis of the influence 
of spectral decomposition parameters on classification 
quality is conducted. The experimental results demonstrate 
that the combined use of spectral and statistical features 
allows achieving high accuracy in recognizing various types 
of radio signals. The proposed approach can be applied in 
practical systems for automatic radio frequency spectrum 
analysis and signal detection in complex electromagnetic 
environments.

Keywords: power, approach, validation, testing, model, 
system, feature, classification, radio signals, amplitude, 
phase.

INTRODUCTION
With the increasing complexity and density of the 

modern radio frequency spectrum, there is a significantly 
growing demand for automated radio signal classification 
systems capable of identifying the type of transmission 
source or the functional purpose of the signal. Such 
systems are employed by leading countries in the fields 
of wireless communications, radio monitoring, electronic 
intelligence and autonomous control of devices based on 
Software-Defined Radio (SDR) [1]. With the advancement 
of software-defined radio technologies and the increasing 
availability of high-frequency data in the form of complex 
low-frequency samples (IQ data), there arises a necessity to 

implement modern machine learning methods for automated 
signal processing and analysis [1–3].

A key stage in building a recognition system is the 
formation of a feature vector that fully and accurately 
reflects the signal properties in both the time and frequency 
domains. This work considers an approach based on the 
combination of spectral, statistical and phase characteristics 
of the signal [1–8]. The spectral representation is primarily 
based on the power spectral density (PSD), which is 
estimated using Peter Welch’s method. Additionally, 
generalized statistical parameters such as mean, standard 
deviation, skewness and kurtosis are taken into account, 
along with derived features describing the structure of the 
amplitude and phase components, entropy, center frequency 
and spectral bandwidth [1–8].

The objective of this article is to develop an approach for 
constructing feature vectors of radio signals based on comp
lex signal samples represented by in-phase and quadrature 
components, followed by the creation of a dataset suitable 
for training machine learning models. Within the scope 
of the study, a complete signal preprocessing pipeline is 
implemented, which includes reading and transforming 
complex samples, extracting statistical and spectral features, 
normalizing them, as well as structuring the results into 
consistent datasets for classification. The proposed approach 
enables the formation of informative feature vectors even 
under conditions of limited input data volume, which is 
critically important for the application of machine learning 
methods in automated radio signal type recognition tasks.

REVIEW OF KEY RESEARCHES 
AND PUBLICATIONS
In the process of studying the spectral features of radio 

signals based on complex signal samples (IQ data), it is im
portant to examine both the theoretical foundations of signal 
processing and modern practical approaches, which are 
predominantly implemented using the Python programming 
language. A review of the literature has shown that a solid 
knowledge base has been established in this field, covering 
both fundamental digital signal processing (DSP) and 
intelligent classification methods.

The review article [1] systematizes existing deep learning 
frameworks applied in cognitive radio networks. It discusses 
main approaches to automatic modulation classification, 
spectral window recognition, unauthorized transmission 
detection and spectrum access optimization. The authors 
also outline a range of open research challenges, including 
performance limitations under constrained computational 
resources, the need for real-time signal processing, as well as 
reliability and power consumption issues in mobile devices.

Reference [2] describes a lightweight deep learning 
model (i.e., a model with a small number of parameters and 
low computational requirements) designed for automatic 
modulation classification in cognitive radio environments. 
Instead of large CNN or RNN architectures, the authors use 
a compact model optimized for deployment on resource-
limited devices. Experiments demonstrate acceptable accu
racy even under low SNR conditions.

A CNN architecture with enhanced noise robustness for 
the task of automatic modulation classification is presented 
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in [3]. The model is trained on spectral and temporal 
representations of signals, including IQ samples. The main 
goal is to provide high classification accuracy under low 
signal-to-noise ratio (SNR) conditions, which is critical for 
electronic warfare and operation in complex electromagnetic 
environments.

In «PySDR: A Guide to SDR and DSP using Python» [9], 
the fundamental principles of complex signal processing, 
particularly IQ data, as well as the concepts of spectral 
analysis and modulation, are described in detail. This is an 
interactive guide tailored for the practical implementation of 
tasks using Python and SDR tools. The SciPy documentation 
[10] complements the toolbox for digital signal processing 
in Python, including filtering, spectral analysis, Fourier 
transforms and window functions. This tool is a standard 
for scientific computing in Python.

The PEOSAT web resource [11] explains IQ data 
principles in the context of satellite radio communications 
and SDR, focusing on storage formats and practical examples 
of signal analysis. The IQ Signal Master software developed 
by Anritsu [12, 13] implements an engineering approach 
to signal analysis at the hardware level, with a focus on IQ 
data processing. The accompanying documentation provides 
tools for detailed spectral analysis, including functionality 
for working with vector signals.

An MIT lecture [14] presents the basic mathematical 
foundation of modulation/demodulation of in-phase and 
quadrature components. The material clearly explains how 
sinusoids with a 90° phase shift form the basis of the complex 
signal representation, which is key in digital processing. 
West and O’Shea [15] presented an approach to wireless 
signal classification using deep learning. A convolutional 
neural network (CNN)-based model demonstrates the 
capability to recognize modulation types directly from raw 
IQ data.

O’Shea et al. [16] extend this topic by presenting a model 
for classification of high-frequency (HF) transmission signals 
based on the same data. Dozens of signal classes were tested 
under various SNR conditions, showing the potential of 
machine learning methods in radio spectrum analysis. «Data 
Analysis in Python» [17] examines data handling structures 
in Python, including processing numerical and complex data 
types necessary for analyzing IQ files.

The article [18] by R. Lyons, «Quadrature Signals: 
Complex, But Not Complicated», describes the principles 
of formation and use of quadrature signals, which are rep
resented in the form of IQ data.

READING IQ FILES 
AND GENERATING COMPLEX NUMBERS
Files containing complex signal data are the primary 

source of information for Software-Defined Radio (SDR) 
systems, as they store instantaneous values of the in-
phase  (I) and quadrature (Q) components. For further 
processing, these data are read from the file and formed as 
complex numbers, which enables the application of spectral 
analysis methods and extraction of physically meaningful 
signal characteristics. This approach provides accurate 
representation of amplitude-frequency and phase properties 
necessary for classification, detection or identification of 
emission sources.

Such files are typically stored in a format where IQ 
data values are interleaved and encoded as 16-bit integers, 
sometimes taking byte order into account. A common 
approach involves converting each pair of IQ values into a 
complex number using the formula [9]:

	 s[n]=I[n]+jQ[n],                            (1)

where I[n] and Q[n] are the in-phase and quadrature 
components of the signal at time index n, respectively, and 
j is the imaginary unit for which 2 1= −j . This representation 
allows the signal to be expressed as a complex envelope, 
which is convenient for further analysis in the frequency 
domain.

During the study, a function was implemented to read 
complex radio signals from a binary file with subsequent 
conversion of the data into an array of complex numbers. 
The developed algorithm includes a check for an even num
ber of samples, which prevents the loss of one of the signal 
components (real or imaginary), and, if necessary, performs 
amplitude normalization.

The resulting array of complex numbers is used in 
subsequent stages of digital signal processing, including 
spectral analysis, extraction of informative features and 
further application in machine learning models. Fig. 1 
presents a block diagram of the function that takes the path 

 

i = raw_data[0::2].astype(np.float32)
q = raw_data[1::2].astype(np.float32)

return i + 1j * q

End

raw_data.size % 2 != 0raw_data = raw_data[:-1] Так Ні

Start

raw_data = np.fromfile(file_path, dtype=np.int16)

Obtaining the path to a binary file with complex numbers (file_path)

F i g . 1. Algorithm for forming complex numbers
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to the binary signal file as input and returns the formed array 
of complex samples.

This approach ensures accurate and consistent signal 
representation, which is critical for the reliability of the 
classification process.

CALCULATION OF SPECTRAL FEATURES
For effective recognition of the radio signal type or 

source of emission, it is necessary to form an informative 
feature vector that reflects key characteristics of the signal 
in the time, frequency, and phase-amplitude domains. The 
signal formed from IQ data as complex samples undergoes 
preprocessing aimed at extracting its statistical, energy and 
spectral characteristics.

The obtained features allow describing the signal struc
ture both as aggregated metrics (e.g., mean value, variance, 
entropy) and in a more detailed form, including an expanded 
spectrum or amplitude distribution. This approach provides 
the machine learning model with a comprehensive rep
resentation of the signal characteristics, significantly impro
ving classification accuracy even in the presence of noise, 
interference or frequency overlap.

The process of building spectral features is based on 
the estimation of the power spectral density (PSD), 
which reflects how the signal energy is distributed across 
frequencies.

This not only preserves the key frequency characteristics 
of the signal but also represents them as numerical statistical 
indicators suitable for use as input features in classification 
algorithms.

In particular, the mean value of the signal spectrum is 
calculated using the formula [8, 17]

N
2

i
i 1

1μ= X(f )
N =
∑ ,                             (2)

where N is the number of frequency bins in the spectrum, 
corresponding to the division of the frequency range into 
equal intervals during the PSD computation and X(fi) is the 
FFT component of the signal at frequency fi.

The standard deviation of the spectrum [16, 13] is defined 
as

( )
N 22

i
i 1

1σ  X(f ) μ 
N =

= −∑ ,                      (3) 

where «μ» is the mean value of the power spectral density.
The coefficient of spectrum asymmetry [11] is calculated 

as follows 
42N

i

i 1

X(f ) μ 1Kurt   3
N σ=

 −
= −  

 
∑ ,                (5)

which allows assessing the deviation of the distribution 
from normality and indicates the presence or absence of 
sharply expressed peaks in the spectrum, which is critical 
for detecting tonal or impulsive components in the signal.

In addition to aggregated metrics, a complete vector 
of spectral characteristics is formed in the form of 
{ }2 2 2

i 1 N 1X(f ) ,  X(f ) , , X(f )−… , where each spectral power 
value is recorded individually and associated with a specific 
discrete frequency bin. Such a feature structure allows 
the model to account for both global and local frequency 
characteristics of the signal.

Unlike the traditional approach, which involves only an 
aggregated estimation of the power spectral density, this 
study performs an analysis of the full spectral shape.

This enables the extraction of a number of informative 
characteristics related to the energy distribution across the 
frequency domain, its concentration, symmetry of the 
distribution and the overall shape of the spectrum.

These features are particularly useful for tasks of signal 
recognition, classification, or clustering based on their 
frequency properties, as they allow for an accurate des
cription of the signal structure. The amplitude spectrum [9, 
10] is formed by calculating the magnitude of the Fourier 
transform of the signal x(t), which is defined as:

( ) ( ){ }i iS f F x t= ,                            (6)

where S(fi) is the amplitude at the i-th frequency and F{x(t)} i 
is the value of the Discrete Fourier Transform (DFT) of the 
signal x(t) at the frequency fi.

The spectral centroid [10, 11], that is, the weighted 
average frequency, is calculated using the formula:

( )
( )

N
i ii 1

c N
ii 1

f S f
f

S f
=

=

⋅
= ∑

∑
,                            (7)

where fi is the frequency of the i-th bin, S(fi) is the amplitude 
value of the spectrum at frequency fi, fc is the frequency 
center of the spectrum.

The spectral width [10, 11] (spectral dispersion) is 
defined as the standard deviation of frequencies relative to 
the centroid:

( ) ( )
( )

2 N
i c ii 1

f N
ii 1

f f S f
σ

S f
=

=

− ⋅
= ∑

∑
,                   (8)

which makes it possible to estimate the degree of spread of 
energy components in the frequency domain.

Spectral flatness [10, 11] is an indicator of how much the 
signal spectrum resembles a flat (i.e., noise-like) shape or 
has pronounced peak frequencies. It is calculated as

( )( )

( )

N
ii 1

N
ii 1

1exp ln S f ε
NF  
1 S f ε
N

=

=

 + 
 =

+

∑

∑
,                 (9)

where ε = 10 –12 – a small positive value to avoid logarithm 
of zero. A value of F ≈ 1 indicates a noise-like signal, while 
F    1<<  indicates the presence of pronounced peaks.

The roll-off frequency [9, 11] frolloff is the frequency 
below which 85 % of the signal energy is concentrated. It 
is determined by finding the frequency threshold fk, such 
that 

( ) ( )
k N

i i
I 1 i 1

 S f 0.85  S f
= =

≥ ⋅∑ ∑ .                    (10)

This feature is useful for evaluating the effective band
width of the signal spectrum.

The peak frequency of the spectrum [10, 11] fpeak is the 
frequency at which the amplitude of the spectrum reaches 
its maximum:

( )( )peak j if f ,  де j arg max S f= = .              (11)
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This parameter allows identification of the dominant 

frequency component in the signal. Thus, the calculated 
frequency features not only capture the position and struc
ture of the energy spectrum but also retain a high degree of 
informativeness for subsequent application in signal analysis 
algorithms based on machine learning.

Unlike features based on the spectral representation of 
the signal, amplitude-phase analysis allows the examination 
of the IQ data structure directly in the time domain. This 
approach takes into account variations in instantaneous 
amplitude and phase, as well as their statistical and infor
mational characteristics. It is especially relevant for sig
nals with phase or pulse modulation, where spatial or 
spectral representations may lose critical temporal details. 
It is particularly relevant for signals with phase or pulse 
modulation, where the spatial or spectral representation may 
lose critical temporal details.

As a result of the analysis, a compact feature vector is 
formed, which generalizes the key characteristics of the 
signal without the need to transform into the frequency do
main. One of the basic quantities is the mean amplitude [10, 
11], calculated by the formula

N

a i
i 1

1μ  x
N =

= ∑ ,                            (12)

where xi is the i-th complex sample of the in-phase and 
quadrature components of the signal, and N is the total 
number of points in the signal.

The amplitude variance [9, 10] is defined as 

( )
N

22
a i a

i 1

1a x μ
N =

= −∑  ,                      (13)

which allows estimating the variability of amplitudes in 
the signal.

The total signal power [4, 6] is calculated as
N

2
i

i 1

1P  x
N =

= ∑ ,                            (14)

i.e., the mean value of the squared amplitude.
To assess the informational content of the signal, the 

amplitude entropy [4, 5] is used:

( ) ( )( )a i iH p x log p x= −∑ ⋅ ≤ ,              (15)

where p(|xi|) is the estimated probability of observing a 
certain amplitude value, usually determined by a histogram.

Phase characteristics of the signal are also analyzed 
separately. The mean phase value [4, 5] is calculated as

N

φ i
i 1

1μ x
N =

= ∠∑ ,                            (16)

where ∠xi is the phase of the i-th sample.
The phase variance [10, 12] is defined by the formula

( )
N

22
φ i φ

i 1

1σ x μ
N =

= ∠ −∑ ,                     (17)

and the phase entropy [8]

( ) ( )( )φ i iH p x log p x= −∑ ∠ ⋅ ∠ ,             (18)

where p(∠xi) is the estimated probability density of phase 
values.

For analyzing the skewness and kurtosis of the distri
bution, the statistics of skewness and excess are used. The 
skewness of the real part [7] of the signal is defined as

3N
i

i 1

1 R(x ) μ Skew   
N σ=

− =  
 

∑ ,                 (19)

where R(xi) is the real part of the signal, μ and σ are the 
mean and standard deviation, respectively.

The excess kurtosis of the real part of the signal [10] is 
calculated as

( ) 4N
i

i 1

R x  μ 1K  
N σ=

− =  
 

∑ ,                   (20)

which allows estimating the degree of peakedness of the 
distribution.

Additionally, the zero crossing rate (ZCR) [6, 7] is 
introduced, which estimates the frequency of sign changes 
in the real part of the signal. It is defined by the formula

( )( ) ( )( )[ ]
N 1

i i 1
i 1

1ZCR  sign R x sign R x 0
N

−

+
=

= ⋅ <∑   (21)

and serves as a useful indicator of the impulsive or noisy 
structure of the signal.

Overall, the amplitude-phase feature vector provides a 
high degree of descriptiveness for subsequent analysis and 
classification of radio signals while preserving the temporal 
structure without distortion associated with transformation 
into the frequency domain.

As a result, feature extraction from complex signals inc
ludes the calculation of spectral, amplitude-phase and sta
tistical characteristics, which together form an informative 
representation of the signal. Spectral features (mean, variance, 
skewness, kurtosis, centroid, roll-off, flatness) characterize 
the distribution of energy in the frequency domain. Ampli
tude-phase analysis accounts for instantaneous values of 
amplitude and phase (mean, variance, entropy), as well 
as temporal indicators, specifically the zero crossing rate 
(ZCR). Additionally, statistics of the real part of the signal 
(skewness, kurtosis) reflect its shape.

This set of features provides a flexible and comprehensive 
description of the signal, suitable for classification in 
machine learning systems.

IMPLEMENTATION OF SPECTRAL FEATURE 
CALCULATIONS
The calculation of signal features is a critically important 

stage in building a classification system, since the feature 
vector determines the degree of informativeness of the signal 
representation for the machine learning model. Within the 
scope of this work, a comprehensive function extract_
features has been implemented, which processes the complex 
radio signal and forms a set of features combining spectral, 
statistical, amplitude-phase and frequency information. This 
function consists of three main submodules: extract_psd_
features, extract_spectrum_features and extract_amplitude_
phase_features.

The first module, extract_psd_features, is responsible for 
calculating the power spectral density (PSD) using Peter 
Welch’s method. In this approach, the signal is transformed 
into the frequency domain with windowing, where the 
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parameter nperseg defines the segment length, affecting 
frequency resolution. The resulting PSD vector describes 
the distribution of signal energy across the entire frequency 
range.

In addition to this vector, which is stored fully and used 
as a set of detailed frequency features, generalized statistical 
characteristics of the spectrum are also calculated. In par
ticular, the mean value of the PSD (psd_mean) characterizes 
the overall level of signal energy saturation; the standard 
deviation (psd_std) reflects the variability of power within 
the spectrum; skewness (psd_skew) allows assessment 
of whether the energy is shifted towards lower or higher 
frequencies; kurtosis (psd_kurt) indicates the peakedness 
of the distribution, i.e., the presence of narrow localized 
maxima.

Thus, the formed feature set enables the model to consider 
both general characteristics of the spectrum and the detailed 
energetic structure of the signal, significantly improving 
classification performance. Fig. 2 illustrates the algorithm 
of the extract_psd_features method.

The second module, extract_spectrum_features, is 
responsible for calculating generalized characteristics of 
the signal's amplitude spectrum based on its Fast Fourier 
Transform (FFT). Unlike Peter Welch’s method, which 
performs averaging of the spectra of individual segments, 
this approach applies the Fourier transform to the entire 

End

Start

Obtaining an array of complex numbers (iq_data), 
the sampling frequency (fs), 

and the number of segments (nperseg)

_, psd = welch(iq_data, fs=fs,
nperseg=nperseg, return_onesided=False)

features.update({
"psd_mean": psd_

"psd_std": psd_
"psd_skew": psd_

"psd_kurt": psd_kurt
})

psd_mean = np.mean(psd)

psd = np.abs(psd)

psd_std = np.std(psd)

return features

psd_skew = skew(psd)

psd_kurt = kurtosis(psd)

Fig. 2. Algorithm of the extract_psd_features method

array of complex samples at once. This approach provides 
a complete spectral representation of the signal at the time 
of analysis without smoothing. As a result, the amplitude 
spectrum (spectrum) and the corresponding frequency 
scale (freqs) are computed, after which key statistical and 
energetic characteristics of the spectrum are calculated.

Among them is the spectral centroid (spec_centroid), 
which reflects the center of mass of the spectrum considering 
the amplitude at each frequency. This parameter indicates 
around which frequency the main energy of the signal is 
concentrated. Next, the spectral bandwidth (spec_band
width) is calculated, which characterizes the degree of 
energy distribution around the centroid; the larger this 
value, the wider the signal spectrum. Another feature is 
the spectral flatness (spec_flatness), which evaluates the 
ratio of the geometric to arithmetic mean of the amplitudes, 
allowing differentiation between peaked (tonal) and flat 
(noisy) signals.

Additionally, the spectral roll-off (spec_rolloff) is 
computed, i.e., the frequency below which 85 % of the 
total signal energy is concentrated. This characteristic allows 
determining the boundary of the main spectral content of 
the signal, which is useful when analyzing bandwidth or 
filtering noise.

The last feature is the peak frequency (peak_freq), 
which corresponds to the frequency at which the amplitude 
spectrum reaches its maximum. It reflects the strongest com
ponent of the signal and allows determining the frequency 
region where the main energy is concentrated. This is espe
cially important for signal type recognition or radiation 
source detection.

Together, these spectral features form a compact yet 
deep representation of the signal in the frequency domain. 
Unlike the detailed PSD vector obtained in the first module, 
here the focus is on integral spectral characteristics that 
preserve key information about the position (spec_centroid, 
peak_freq), distribution (spec_bandwidth, spec_rolloff) and 
shape (spec_flatness) of the signal’s spectral content. This 
enables their effective use in classification or clustering 
tasks. Fig. 3 depicts the algorithm of the extract_spectrum_
features method.

The extract_amplitude_phase_features module is res
ponsible for calculating the statistical and informational cha
racteristics of the signal in the amplitude-phase domain. Unlike 
frequency analysis based on spectral features, this approach 
utilizes instantaneous signal parameters in the time domain 
obtained by decomposing complex radio signal samples into 
amplitude and phase. At the first stage, the amplitude and 
phase of each signal sample are calculated. Then features 
are formed that describe both the energy structure and the 
distributions of amplitude and phase components.

Initially, the signal power is determined as the sum of 
squared amplitudes. The mean and variance of the amplitude 
allow assessing the intensity and variability of the signal in 
the time domain. To better describe the complexity of the 
distribution, amplitude entropy and phase entropy are used, 
which define the degree of disorder or informational richness 
of each component.

In addition, phase characteristics are analyzed: mean 
value and variance of the signal phase, which can reflect 
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End

End

Start

Obtaining an array of complex numbers (iq_data) 
and the sampling frequency(fs)

Obtaining an array of complex numbers (iq_data)

phase = np.angle(iq_data)

signal_power = np.sum(amplitude ** 2)

mean_val = np.mean(amplitude)

var_val = np.var(amplitude)

amp_entropy = get_entropy(amplitude)

phase_entropy = get_entropy(phase)

phase_mean = np.mean(phase)

phase_var = np.var(phase)

skewness_val = skew(np.real(iq_data))

kurt_val = kurtosis(np.real(iq_data))

zcr = ((np.diff(np.sign(np.real(iq_data))) 
!= 0).sum()) / len(iq_data)

return { "amp_mean": mean_val, 
"amp_var": var_val,

"amp_entropy": amp_entropy,
"signal_power": signal_power,
"phase_mean": phase_mean,

"phase_var": phase_var,
"phase_entropy": phase_entropy,

"skewness": skewness_val,
"kurtosis": kurt_val, 

"zcr": zcr }

amplitude = np.abs(iq_data)

return { "spec_centroid": spec_centroid, 
"spec_bandwidth": spec_bandwidth, 

"spec_flatness": spec_flatness, 
"spec_rolloff": spec_rolloff, 
"peak_freq": peak_freq }

spec_bandwidth = np.sqrt(np.sum(((freqs - 
spec_centroid) ** 2) * spectrum) / spectrum_sum)

spec_flatness = np.exp(np.mean(np.log(spectrum + 1e-
12))) / (np.mean(spectrum) + 1e-12)

spec_rolloff = freqs[np.where(np.cumsum(spectrum) >= 
0.85 * spectrum_sum)[0][0]]

freqs = np.fft.fftfreq(len(iq_data), 1 / fs)

peak_freq = freqs[np.argmax(spectrum)]

spectrum = np.abs(np.fft.fft(iq_data))

spec_centroid = np.sum(freqs * spectrum) / spectrum_sum

F i g . 3. Algorithm of the extract_spectrum_features 
method

symmetry or asymmetry of the phase inherent to certain 
types of modulation. Additionally, features calculated based 
on the real part of the signal – skewness and kurtosis – 
indicate asymmetry and peakedness of the distribution, 
respectively. Finally, an important characteristic is the zero 
crossing rate (ZCR), which reflects how often the signal 
changes sign and can be informative in vibration analysis 
or detection of impulsive components.

Thus, extract_amplitude_phase_features forms a feature 
set that encompasses both energetic (for example, signal_
power) and statistical and informational properties of the 
signal, providing its full representation in the time domain. 
These characteristics can effectively complement spectral 
features in classification or signal type recognition tasks.

Fig. 5 shows the overall logic of feature vector calcu
lation, where each function computing a specific signal 
feature (for example, skewness, flatness, or peak frequency) 
is called sequentially and the results are collected into a 
single array for further use.

IMPLEMENTATION OF SAVING RESULTS IN 
COMMA-SEPARATED VALUES (CSV) FORMAT 
FOR FURTHER PROCESSING
After calculating spectral features for each segment of the 

complex radio signal, it is advisable to save the results in a 
convenient format for further analysis, visualization or use 

F i g . 4. Algorithm of the extract_amplitude_phase_
features method

in classification tasks. The most common and convenient 
format for storing structured data is CSV, which is supported 
by most Python libraries, machine learning systems and 
spreadsheet editors.

To form a table with features, the pandas DataFrame struc
ture is used, where each row corresponds to one segment of 
the signal and columns represent individual spectral features. 
Fig. 6 illustrates the algorithm for saving the formed feature 
dataset.

Fig. 7. Algorithm for initializing all features by saving the 
path to the IQ file and the name of each directory containing 
these files into an array.

Start
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Start

Obtaining an array of features (features) and the path to 
save the features (output_path)

df = pd.DataFrame(features)

df.to_csv(output_path, index=False, encoding="utf-8")

End

return features

features.update(extract_amplitude_phase_features(iq_data))

features.update(extract_spectrum_features(iq_data=iq_data, fs=fs))

Start

Obtaining an array of complex numbers (iq_data), the sampling frequency (fs), 
and the number of segments (nperseg)

return {} iq_data.size == 0

features = {}

features.update(extract_psd_features(iq_data=iq_data, fs=fs, nperseg=nperseg))

Так Ні

F i g . 5. Algorithm for calculating all features

End

F i g . 6. Algorithm for saving the formed feature dataset

F i g . 7. Algorithm for generating directory names and determining access paths to signals in IQ data

Start

End

Obtaining the main directory path “main_folder_path”
 

full_folder_path.is_dir()

arr_files = []
labels = []

folders_name = sorted(os.listdir(main_folder_path))

full_folder_path = Path(main_folder_path) / folder_name

files = [str(file.as_posix()) for file in full_folder_path.glob("*.iq")]

files != null

arr_files.append(files) labels.append(folder_name) return arr_files, labels

for folder_name in folders_name

Так Ні

Так Ні

After determining the access paths and directory names, it 
is necessary to perform feature extraction for each individual 
signal record. Fig. 8 shows the algorithm for calculating 
features for each signal read from a separate element of the 
input dataset.

After executing each of the algorithms listed in this 
section, we obtain as a result a feature dataset. Fig. 9 shows 
a fragment of the dataset.

The presented functional blocks, depicted as structured 
diagrams, reflect the complete logic of signal processing 
from reading input data to forming a feature vector suitable 
for subsequent analysis or classification.
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Each diagram illustrates the key stages of the corres
ponding method: calculation of the PSD, formation of 
generalized spectral characteristics (centroid, bandwidth, 
flatness, roll-off, peak frequency), as well as the computation 
of statistical metrics based on the amplitude and phase of the 
signal. This approach has allowed not only to document the 

implementation of algorithms in code but also to visualize 
their internal structure, which is important for verifying 
the correctness of the logic and for further integration into 
larger systems.

The implemented functions are universal, modular, and 
can be used to build a flexible and extensible system for 
automated processing and classification of radio signals. 
This creates prerequisites for further system optimization, 
addition of new features describing the structure and 
properties of signals with new informative metrics and 
adaptation of algorithms to specific tasks in the fields of 
radio monitoring, intelligence or spectral analysis.

CONCLUSIONS
1.	 A multi-level approach to the analysis of complex 

radio signals has been implemented with the purpose 
of extracting informative features suitable for auto
mated recognition and classification.

2.	 Processing of spectral, temporal and amplitude-phase 
domains allowed for a comprehensive assessment of 
the signal structure.

3.	 Individual features were distinguished: power spectral 
density indicators, integral spectral characteristics 
(centroid, bandwidth, flatness, roll-off, peak 
frequency) and statistical metrics of the amplitude-
phase structure.

4.	 Generalized parameters such as mean, variance, 
entropy and zero-crossing rate enabled coverage of 
both global and local signal characteristics.

5.	 The obtained results confirmed that the combination 
of these methods forms a reliable feature space for 
machine learning tasks, improving classification 
accuracy even in the presence of noise or low signal-
to-noise ratio.

6.	 Further research should focus on comparing the 
effectiveness of various machine learning models 
based on the formed features, as well as on opti
mizing computational costs for real-time applica
tions.

7.	 A promising direction is the expansion of the feature 
set considering phase transitions, detection of cluster 
structures in the spectrum and adaptation of the 
methodology for wideband signals.

F i g . 9. A fragment of the dataset with features extracted from complex signals represented as IQ data

Start

End

Obtaining the main directory path 
(main_folder_path)

all_features = []
all_labels = []

arr_included_files, labels = 
init_folders(main_folder_path)

feature_dict = 
extract_features(iq_data)

all_features.append(feature_dict)
all_labels.append(label_name)

label_name = labels[label_idx]

return all_features, labels

label_name = labels[label_idx]

for label_idx, folder in 
enumerate(arr_included_files):

for file in folder

F i g . 8. Algorithm for computing features for each signal 
read from an individual element of the input IQ data
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Слюсар В.І., Козлов В.Г., Козлов Д.В.

НЕЙРОМЕРЕЖЕВИЙ МЕТОД ДОСЛІДЖЕННЯ 
СПЕКТРАЛЬНИХ ХАРАКТЕРИСТИК 

У статті розглядається задача класифікації радіо
сигналів на основі спектральних ознак, сформованих 
із комплексних низькочастотних вибірок сигналу, що 
включають інфазну та квадратурну компоненти. Ос-
новною метою дослідження є розроблення моделі ма-
шинного навчання, здатної ефективно ідентифікувати 
тип сигналу за спектральними характеристиками. Для 
представлення вхідних даних використано спектраль-
ну щільність потужності (PSD), обчислену методом 
Petera Welcha, а також сукупність статистичних 
та частотно-енергетичних ознак, що відображають 
амплітудно-фазову структуру сигналу. 

Порівняльний аналіз з класичними методами кла
сифікації сигналів, заснованими на узагальнених ста
тистиках, продемонстрував перевагу запропонованого 
підходу як за точністю, так і за швидкодією при обробці 
великих обсягів даних.

У межах дослідження запропоновано архітектуру 
моделі, описано процес її навчання, валідації та тес-
тування. Додатково проаналізовано вплив параметрів 
спектрального розкладу на якість класифікації. Ре-
зультати експериментального моделювання засвідчу-
ють, що поєднання спектральних та статистичних 
дескрипторів дозволяє досягти високої точності при 
розпізнаванні різних типів радіосигналів. Запропоно-
ваний підхід може бути ефективно застосований у 
практичних системах автоматизованого аналізу радіо
частотного спектра та виявлення сигналів в умовах 
складної електромагнітної обстановки.

Ключові слова: потужність, підхід, валідація, 
тестування, модель, система, ознака, класифікація, 
радіосигнали, амплітуда, фаза.


