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NEURAL NETWORK METHOD
FORINVESTIGATION SPECTRAL
CHARACTERISTICS

This article considers the problem of radio signal clas-
sification based on spectral features formed from complex
low-frequency signal samples (in-phase and quadrature
components). The main goal of the research is to build
a single machine learning model capable of effectively
identifying the type of signal by its spectral characteristics.
The signal is represented using the power spectral density
(PSD), calculated by the Welch method, as well as additional
statistical and frequency-energy features that reflect the
amplitude-phase structure ofthe signal. The model structure
is proposed and the processes of its training, validation
and testing are implemented. An analysis of the influence
of spectral decomposition parameters on classification
quality is conducted. The experimental results demonstrate
that the combined use of spectral and statistical features
allows achieving high accuracy in recognizing various types
of radio signals. The proposed approach can be applied in
practical systems for automatic radio frequency spectrum
analysis and signal detection in complex electromagnetic
environments.

Keywords: power, approach, validation, testing, model,
system, feature, classification, radio signals, amplitude,
phase.

INTRODUCTION

With the increasing complexity and density of the
modern radio frequency spectrum, there is a significantly
growing demand for automated radio signal classification
systems capable of identifying the type of transmission
source or the functional purpose of the signal. Such
systems are employed by leading countries in the fields
of wireless communications, radio monitoring, electronic
intelligence and autonomous control of devices based on
Software-Defined Radio (SDR) [1]. With the advancement
of software-defined radio technologies and the increasing
availability of high-frequency data in the form of complex
low-frequency samples (IQ data), there arises a necessity to

implement modern machine learning methods for automated
signal processing and analysis [1-3].

A key stage in building a recognition system is the
formation of a feature vector that fully and accurately
reflects the signal properties in both the time and frequency
domains. This work considers an approach based on the
combination of spectral, statistical and phase characteristics
of the signal [1-8]. The spectral representation is primarily
based on the power spectral density (PSD), which is
estimated using Peter Welch’s method. Additionally,
generalized statistical parameters such as mean, standard
deviation, skewness and kurtosis are taken into account,
along with derived features describing the structure of the
amplitude and phase components, entropy, center frequency
and spectral bandwidth [1-8].

The objective of this article is to develop an approach for
constructing feature vectors of radio signals based on comp-
lex signal samples represented by in-phase and quadrature
components, followed by the creation of a dataset suitable
for training machine learning models. Within the scope
of the study, a complete signal preprocessing pipeline is
implemented, which includes reading and transforming
complex samples, extracting statistical and spectral features,
normalizing them, as well as structuring the results into
consistent datasets for classification. The proposed approach
enables the formation of informative feature vectors even
under conditions of limited input data volume, which is
critically important for the application of machine learning
methods in automated radio signal type recognition tasks.

REVIEW OF KEY RESEARCHES

AND PUBLICATIONS

In the process of studying the spectral features of radio
signals based on complex signal samples (IQ data), it is im-
portant to examine both the theoretical foundations of signal
processing and modern practical approaches, which are
predominantly implemented using the Python programming
language. A review of the literature has shown that a solid
knowledge base has been established in this field, covering
both fundamental digital signal processing (DSP) and
intelligent classification methods.

The review article [1] systematizes existing deep learning
frameworks applied in cognitive radio networks. It discusses
main approaches to automatic modulation classification,
spectral window recognition, unauthorized transmission
detection and spectrum access optimization. The authors
also outline a range of open research challenges, including
performance limitations under constrained computational
resources, the need for real-time signal processing, as well as
reliability and power consumption issues in mobile devices.

Reference [2] describes a lightweight deep learning
model (i.e., a model with a small number of parameters and
low computational requirements) designed for automatic
modulation classification in cognitive radio environments.
Instead of large CNN or RNN architectures, the authors use
a compact model optimized for deployment on resource-
limited devices. Experiments demonstrate acceptable accu-
racy even under low SNR conditions.

A CNN architecture with enhanced noise robustness for
the task of automatic modulation classification is presented
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in [3]. The model is trained on spectral and temporal
representations of signals, including IQ samples. The main
goal is to provide high classification accuracy under low
signal-to-noise ratio (SNR) conditions, which is critical for
electronic warfare and operation in complex electromagnetic
environments.

In «PySDR: A Guide to SDR and DSP using Python» [9],
the fundamental principles of complex signal processing,
particularly IQ data, as well as the concepts of spectral
analysis and modulation, are described in detail. This is an
interactive guide tailored for the practical implementation of
tasks using Python and SDR tools. The SciPy documentation
[10] complements the toolbox for digital signal processing
in Python, including filtering, spectral analysis, Fourier
transforms and window functions. This tool is a standard
for scientific computing in Python.

The PEOSAT web resource [11] explains 1Q data
principles in the context of satellite radio communications
and SDR, focusing on storage formats and practical examples
of signal analysis. The 1Q Signal Master software developed
by Anritsu [12, 13] implements an engineering approach
to signal analysis at the hardware level, with a focus on 1Q
data processing. The accompanying documentation provides
tools for detailed spectral analysis, including functionality
for working with vector signals.

An MIT lecture [14] presents the basic mathematical
foundation of modulation/demodulation of in-phase and
quadrature components. The material clearly explains how
sinusoids with a 90° phase shift form the basis of the complex
signal representation, which is key in digital processing.
West and O’Shea [15] presented an approach to wireless
signal classification using deep learning. A convolutional
neural network (CNN)-based model demonstrates the
capability to recognize modulation types directly from raw
1Q data.

O’Shea et al. [16] extend this topic by presenting a model
for classification of high-frequency (HF) transmission signals
based on the same data. Dozens of signal classes were tested
under various SNR conditions, showing the potential of
machine learning methods in radio spectrum analysis. «Data
Analysis in Python» [17] examines data handling structures
in Python, including processing numerical and complex data
types necessary for analyzing 1Q files.

The article [18] by R. Lyons, «Quadrature Signals:
Complex, But Not Complicated», describes the principles
of formation and use of quadrature signals, which are rep-
resented in the form of 1Q data.

READING IQ FILES

AND GENERATING COMPLEX NUMBERS

Files containing complex signal data are the primary
source of information for Software-Defined Radio (SDR)
systems, as they store instantaneous values of the in-
phase (I) and quadrature (Q) components. For further
processing, these data are read from the file and formed as
complex numbers, which enables the application of spectral
analysis methods and extraction of physically meaningful
signal characteristics. This approach provides accurate
representation of amplitude-frequency and phase properties
necessary for classification, detection or identification of
emission sources.

Such files are typically stored in a format where 1Q
data values are interleaved and encoded as 16-bit integers,
sometimes taking byte order into account. A common
approach involves converting each pair of 1Q values into a
complex number using the formula [9]:

s[n]=I[n]+jQ[n], (M

where I[n] and Q[n] are the in-phase and quadrature
components of the signal at time index n, respectively, and
j is the imaginary unit for which j* = —1. This representation
allows the signal to be expressed as a complex envelope,
which is convenient for further analysis in the frequency
domain.

During the study, a function was implemented to read
complex radio signals from a binary file with subsequent
conversion of the data into an array of complex numbers.
The developed algorithm includes a check for an even num-
ber of samples, which prevents the loss of one of the signal
components (real or imaginary), and, if necessary, performs
amplitude normalization.

The resulting array of complex numbers is used in
subsequent stages of digital signal processing, including
spectral analysis, extraction of informative features and
further application in machine learning models. Fig. 1
presents a block diagram of the function that takes the path

C

Start )

¥

‘ Obtaining the path to a binary file with complex numbers (file_path) ‘

¥

‘ raw_data = np.fromfile(file_path, dtype=np.int16) ‘

raw_data = raw_data[:-1]

raw_data.size % 2 !=0

!

i=raw_data[0::2].astype(np.float32)

q = raw_data[1::2].astype(np.float32)
v

returni+ 1j * q ‘

]

C

End D)

Fig. 1. Algorithm for forming complex numbers
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to the binary signal file as input and returns the formed array
of complex samples.

This approach ensures accurate and consistent signal
representation, which is critical for the reliability of the
classification process.

CALCULATION OF SPECTRAL FEATURES

For effective recognition of the radio signal type or
source of emission, it is necessary to form an informative
feature vector that reflects key characteristics of the signal
in the time, frequency, and phase-amplitude domains. The
signal formed from IQ data as complex samples undergoes
preprocessing aimed at extracting its statistical, energy and
spectral characteristics.

The obtained features allow describing the signal struc-
ture both as aggregated metrics (e.g., mean value, variance,
entropy) and in a more detailed form, including an expanded
spectrum or amplitude distribution. This approach provides
the machine learning model with a comprehensive rep-
resentation of the signal characteristics, significantly impro-
ving classification accuracy even in the presence of noise,
interference or frequency overlap.

The process of building spectral features is based on
the estimation of the power spectral density (PSD),
which reflects how the signal energy is distributed across
frequencies.

This not only preserves the key frequency characteristics
of the signal but also represents them as numerical statistical
indicators suitable for use as input features in classification
algorithms.

In particular, the mean value of the signal spectrum is
calculated using the formula [8, 17]

L S y?
H—N§|X(f1)| ; 2)

where N is the number of frequency bins in the spectrum,
corresponding to the division of the frequency range into
equal intervals during the PSD computation and X(fi) is the
FFT component of the signal at frequency f.

The standard deviation of the spectrum [16, 13] is defined
as

1 N 2 2
o= \/ﬁg(lxm ) -n)s 3)
where «u» is the mean value of the power spectral density.

The coefficient of spectrum asymmetry [11] is calculated

as follows
4
N (X)) -
Kurt = %Z(MJ _3’ (5)

i=1 o

which allows assessing the deviation of the distribution
from normality and indicates the presence or absence of
sharply expressed peaks in the spectrum, which is critical
for detecting tonal or impulsive components in the signal.

In addition to aggregated metrics, a complete vector
of spectral characteristics is formed in the form of
{|X(f OIS XED[ 5o [X(Fxc )|2}, where each spectral power
value is recorded individually and associated with a specific
discrete frequency bin. Such a feature structure allows
the model to account for both global and local frequency
characteristics of the signal.

Unlike the traditional approach, which involves only an
aggregated estimation of the power spectral density, this
study performs an analysis of the full spectral shape.

This enables the extraction of a number of informative
characteristics related to the energy distribution across the
frequency domain, its concentration, symmetry of the
distribution and the overall shape of the spectrum.

These features are particularly useful for tasks of signal
recognition, classification, or clustering based on their
frequency properties, as they allow for an accurate des-
cription of the signal structure. The amplitude spectrum [9,
10] is formed by calculating the magnitude of the Fourier
transform of the signal x(t), which is defined as:

S(fi) =[F{x (1)}, (6)

where S(fi) is the amplitude at the i-th frequency and F {x(t)}i
is the value of the Discrete Fourier Transform (DFT) of the
signal x(t) at the frequency fi.

The spectral centroid [10, 11], that is, the weighted
average frequency, is calculated using the formula:

N
f — Zi:lfi ) S(fl)
N b
Zizls(fi)
where fi is the frequency of the i-th bin, S(fi) is the amplitude
value of the spectrum at frequency fi, f. is the frequency
center of the spectrum.
The spectral width [10, 11] (spectral dispersion) is
defined as the standard deviation of frequencies relative to
the centroid:

()

Jziﬂ(fi—fc)Z-S(ﬂ)’ ®

Zilils(fi)

which makes it possible to estimate the degree of spread of
energy components in the frequency domain.

Spectral flatness [10, 11] is an indicator of how much the
signal spectrum resembles a flat (i.e., noise-like) shape or
has pronounced peak frequencies. It is calculated as

exp (ﬁ >N In(S(fi)+ 8))

1
EZLS(ﬂ)_{'S

where & = 10~12 — a small positive value to avoid logarithm
of zero. A value of F = 1 indicates a noise-like signal, while
F<«1 indicates the presence of pronounced peaks.

The roll-off frequency [9, 11] fwoorr is the frequency
below which 85 % of the signal energy is concentrated. It
is determined by finding the frequency threshold fi, such
that

F=

, )

3 S(f) 2 o.ss-i S(f:). (10)

This feature is useful for evaluating the effective band-
width of the signal spectrum.

The peak frequency of the spectrum [10, 11] fpeax is the
frequency at which the amplitude of the spectrum reaches
its maximum:

foeax = £, 1€ j=arg max (S(f3)). (11)
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This parameter allows identification of the dominant
frequency component in the signal. Thus, the calculated
frequency features not only capture the position and struc-
ture of the energy spectrum but also retain a high degree of
informativeness for subsequent application in signal analysis
algorithms based on machine learning.

Unlike features based on the spectral representation of
the signal, amplitude-phase analysis allows the examination
of the 1Q data structure directly in the time domain. This
approach takes into account variations in instantaneous
amplitude and phase, as well as their statistical and infor-
mational characteristics. It is especially relevant for sig-
nals with phase or pulse modulation, where spatial or
spectral representations may lose critical temporal details.
It is particularly relevant for signals with phase or pulse
modulation, where the spatial or spectral representation may
lose critical temporal details.

As a result of the analysis, a compact feature vector is
formed, which generalizes the key characteristics of the
signal without the need to transform into the frequency do-
main. One of the basic quantities is the mean amplitude [10,
11], calculated by the formula

LS 12
Ha = E;lxila ( )

where xi is the i-th complex sample of the in-phase and
quadrature components of the signal, and N is the total
number of points in the signal.

The amplitude variance [9, 10] is defined as

J 2
32_ il Ma s 13
=g (l-n) (1

which allows estimating the variability of amplitudes in
the signal.
The total signal power [4, 6] is calculated as

P= i§:|x-|2 (14)
NS

i.e., the mean value of the squared amplitude.
To assess the informational content of the signal, the
amplitude entropy [4, 5] is used:

H, = -p([xi])- <log(p(|xi])), (15

where p(|xi|) is the estimated probability of observing a

certain amplitude value, usually determined by a histogram.
Phase characteristics of the signal are also analyzed

separately. The mean phase value [4, 5] is calculated as

1N
= in, 16
Mo NE (16)

where Zxi is the phase of the i-th sample.
The phase variance [10, 12] is defined by the formula

1 N
op =2 (Lxi—1y), (17)
Nio
and the phase entropy [8]

H, =—2p(<xi)-log(p(<£x:)), (18)

where p(£xi) is the estimated probability density of phase
values.

For analyzing the skewness and kurtosis of the distri-
bution, the statistics of skewness and excess are used. The
skewness of the real part [7] of the signal is defined as

Skew = i%(—R(Xi)_uj > (19)

i=1 9

where R(xi) is the real part of the signal, p and o are the
mean and standard deviation, respectively.
The excess kurtosis of the real part of the signal [10] is

calculated as

N R - 4

K = lz(Mj ’ (20)
N i=1 ()

which allows estimating the degree of peakedness of the
distribution.

Additionally, the zero crossing rate (ZCR) [6, 7] is
introduced, which estimates the frequency of sign changes
in the real part of the signal. It is defined by the formula

7ZCR = %EI[Sign(R(xi))-sign(R(Xm))] <0 (21)

and serves as a useful indicator of the impulsive or noisy
structure of the signal.

Overall, the amplitude-phase feature vector provides a
high degree of descriptiveness for subsequent analysis and
classification of radio signals while preserving the temporal
structure without distortion associated with transformation
into the frequency domain.

As a result, feature extraction from complex signals inc-
ludes the calculation of spectral, amplitude-phase and sta-
tistical characteristics, which together form an informative
representation of the signal. Spectral features (mean, variance,
skewness, kurtosis, centroid, roll-off, flatness) characterize
the distribution of energy in the frequency domain. Ampli-
tude-phase analysis accounts for instantaneous values of
amplitude and phase (mean, variance, entropy), as well
as temporal indicators, specifically the zero crossing rate
(ZCR). Additionally, statistics of the real part of the signal
(skewness, kurtosis) reflect its shape.

This set of features provides a flexible and comprehensive
description of the signal, suitable for classification in
machine learning systems.

IMPLEMENTATION OF SPECTRAL FEATURE

CALCULATIONS

The calculation of signal features is a critically important
stage in building a classification system, since the feature
vector determines the degree of informativeness of the signal
representation for the machine learning model. Within the
scope of this work, a comprehensive function extract
features has been implemented, which processes the complex
radio signal and forms a set of features combining spectral,
statistical, amplitude-phase and frequency information. This
function consists of three main submodules: extract psd_
features, extract_spectrum_features and extract amplitude
phase_features.

The first module, extract psd_features, is responsible for
calculating the power spectral density (PSD) using Peter
Welch’s method. In this approach, the signal is transformed
into the frequency domain with windowing, where the
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parameter nperseg defines the segment length, affecting
frequency resolution. The resulting PSD vector describes
the distribution of signal energy across the entire frequency
range.

In addition to this vector, which is stored fully and used
as a set of detailed frequency features, generalized statistical
characteristics of the spectrum are also calculated. In par-
ticular, the mean value of the PSD (psd_mean) characterizes
the overall level of signal energy saturation; the standard
deviation (psd_std) reflects the variability of power within
the spectrum; skewness (psd_skew) allows assessment
of whether the energy is shifted towards lower or higher
frequencies; kurtosis (psd_kurt) indicates the peakedness
of the distribution, i.e., the presence of narrow localized
maxima.

Thus, the formed feature set enables the model to consider
both general characteristics of the spectrum and the detailed
energetic structure of the signal, significantly improving
classification performance. Fig. 2 illustrates the algorithm
of the extract psd features method.

The second module, extract spectrum_features, is
responsible for calculating generalized characteristics of
the signal's amplitude spectrum based on its Fast Fourier
Transform (FFT). Unlike Peter Welch’s method, which
performs averaging of the spectra of individual segments,
this approach applies the Fourier transform to the entire

Obtaining an array of complex numbers (iq_data),
the sampling frequency (fs),
and the number of segments (nperseg)

v

_, psd = welch(iq_data, fs=fs,
nperseg=nperseg, return_onesided=False)

v

| psd = np.abs(psd) |

v

| psd_mean = np.mean(psd) |

v

| psd_std = np.std(psd) |

v

| psd_skew = skew(psd) |

v

| psd_kurt = kurtosis(psd) |

v

features.update({
"psd_mean": psd_
"psd_std": psd_
"psd_skew'": psd_
"psd_kurt": psd_kurt
b))

v

return features

End

Fig. 2. Algorithm of the extract psd features method

array of complex samples at once. This approach provides
a complete spectral representation of the signal at the time
of analysis without smoothing. As a result, the amplitude
spectrum (spectrum) and the corresponding frequency
scale (freqs) are computed, after which key statistical and
energetic characteristics of the spectrum are calculated.

Among them is the spectral centroid (spec_centroid),
which reflects the center of mass of the spectrum considering
the amplitude at each frequency. This parameter indicates
around which frequency the main energy of the signal is
concentrated. Next, the spectral bandwidth (spec_band-
width) is calculated, which characterizes the degree of
energy distribution around the centroid; the larger this
value, the wider the signal spectrum. Another feature is
the spectral flatness (spec_flatness), which evaluates the
ratio of the geometric to arithmetic mean of the amplitudes,
allowing differentiation between peaked (tonal) and flat
(noisy) signals.

Additionally, the spectral roll-off (spec_rolloff) is
computed, i.e., the frequency below which 85 % of the
total signal energy is concentrated. This characteristic allows
determining the boundary of the main spectral content of
the signal, which is useful when analyzing bandwidth or
filtering noise.

The last feature is the peak frequency (peak freq),
which corresponds to the frequency at which the amplitude
spectrum reaches its maximum. It reflects the strongest com-
ponent of the signal and allows determining the frequency
region where the main energy is concentrated. This is espe-
cially important for signal type recognition or radiation
source detection.

Together, these spectral features form a compact yet
deep representation of the signal in the frequency domain.
Unlike the detailed PSD vector obtained in the first module,
here the focus is on integral spectral characteristics that
preserve key information about the position (spec_centroid,
peak freq), distribution (spec_bandwidth, spec_rolloff) and
shape (spec_flatness) of the signal’s spectral content. This
enables their effective use in classification or clustering
tasks. Fig. 3 depicts the algorithm of the extract spectrum
features method.

The extract_amplitude phase features module is res-
ponsible for calculating the statistical and informational cha-
racteristics of the signal in the amplitude-phase domain. Unlike
frequency analysis based on spectral features, this approach
utilizes instantaneous signal parameters in the time domain
obtained by decomposing complex radio signal samples into
amplitude and phase. At the first stage, the amplitude and
phase of each signal sample are calculated. Then features
are formed that describe both the energy structure and the
distributions of amplitude and phase components.

Initially, the signal power is determined as the sum of
squared amplitudes. The mean and variance of the amplitude
allow assessing the intensity and variability of the signal in
the time domain. To better describe the complexity of the
distribution, amplitude entropy and phase entropy are used,
which define the degree of disorder or informational richness
of each component.

In addition, phase characteristics are analyzed: mean
value and variance of the signal phase, which can reflect
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Obtaining an array of complex numbers (iq_data)
and the sampling frequency(fs)

v

| freqs = np.fit.fitfreq(len(iq_data), 1 / fs) |

| Obtaining an array of complex numbers (iq_data) |

v

| amplitude = np.abs(iq_data) |

v

v

| spectrum = np.abs(np.fit.fit(iq_data)) |

v

| spec_centroid = np.sum(freqs * spectrum) / spectrum_sum |

| phase = np.angle(iq_data) |

)’

| signal_power = np.sum(amplitude ** 2) |

v

v

spec_bandwidth = np.sqrt(np.sum(((freqs -
spec_centroid) ** 2) * spectrum) / spectrum_sum)

v

spec_flatness = np.exp(np.mean(np.log(spectrum + le-
12))) / (np.mean(spectrum) + le-12)

| mean_val = np.mean(amplitude) |

Y

| var_val = np.var(amplitude) |

v

| amp_entropy = get_entropy(amplitude) |

v

v

spec_rolloff = freqs[np.where(np.cumsum(spectrum) >=
0.85 * spectrum_sum)[0][0]]

v

peak freq = freqs[np.argmax(spectrum)]| |

v

return { "spec_centroid": spec_centroid,
"spec_bandwidth": spec_bandwidth,
"spec_flatness': spec_flatness,
"spec_rolloff': spec_rolloff,
"peak_freq": peak_freq }

End

Fig. 3. Algorithm of the extract spectrum_features
method

symmetry or asymmetry of the phase inherent to certain
types of modulation. Additionally, features calculated based
on the real part of the signal — skewness and kurtosis —
indicate asymmetry and peakedness of the distribution,
respectively. Finally, an important characteristic is the zero
crossing rate (ZCR), which reflects how often the signal
changes sign and can be informative in vibration analysis
or detection of impulsive components.

Thus, extract_amplitude phase features forms a feature
set that encompasses both energetic (for example, signal
power) and statistical and informational properties of the
signal, providing its full representation in the time domain.
These characteristics can effectively complement spectral
features in classification or signal type recognition tasks.

Fig. 5 shows the overall logic of feature vector calcu-
lation, where each function computing a specific signal
feature (for example, skewness, flatness, or peak frequency)
is called sequentially and the results are collected into a
single array for further use.

IMPLEMENTATION OF SAVING RESULTS IN

COMMA-SEPARATED VALUES (CSV) FORMAT

FOR FURTHER PROCESSING

After calculating spectral features for each segment of the
complex radio signal, it is advisable to save the results in a
convenient format for further analysis, visualization or use

| phase_entropy = get_entropy(phase) |

v

| phase_mean = np.mean(phase) |

v

| phase_var = np.var(phase) |

v

| skewness_val = skew(np.real(iq_data)) |

Y

| kurt_val = kurtosis(np.real(iq_data)) |

v
zer = ((np.diff(np.sign(np.real(iq_data)))
!=0).sum()) / len(iq_data)

v

return { "amp_mean"': mean_val,
"amp_var'": var_val,
"amp_entropy': amp_entropy,
""signal_power'': signal_power,
""phase_mean'': phase_mean,
"phase_var': phase_var,
"phase_entropy': phase_entropy,
"skewness'': skewness_val,
"Kurtosis'": kurt_val,
"zer'": zer }

End

Fig. 4. Algorithm of the extract amplitude phase
features method

in classification tasks. The most common and convenient
format for storing structured data is CSV, which is supported
by most Python libraries, machine learning systems and
spreadsheet editors.

To form a table with features, the pandas DataFrame struc-
ture is used, where each row corresponds to one segment of
the signal and columns represent individual spectral features.
Fig. 6 illustrates the algorithm for saving the formed feature
dataset.

Fig. 7. Algorithm for initializing all features by saving the
path to the 1Q file and the name of each directory containing
these files into an array.
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Obtaining an array of complex numbers (iq_data), the sampling frequency (fs),
and the number of segments (nperseg)

‘ features = {}
v
‘ features.update(extract _psd _features(iq_data=iq_data, fs=fs, nperseg=nperseg)) ‘
v
‘ features.update(extract_spectrum_features(iq_data=iq_data, fs=fs)) ‘

‘ return {}

12
‘features.update(extract_amplitude _phase_features(iq_data)) ‘
)

‘ return features ‘

v
End
Fig. 5. Algorithm for calculating all features

Start After determining the access paths and directory names, it
is necessary to perform feature extraction for each individual

t

signal record. Fig. 8 shows the algorithm for calculating

Obtaining an array of features (features) and the path to .
8 Y ( ) P features for each signal read from a separate element of the

save the features (output_path)

v input dataset.
df = pd.DataFrame(features) | After executing each of the algorithms listed in this
v section, we obtain as a result a feature dataset. Fig. 9 shows

df.to_csv(output_path, index=False, encoding=""utf-8") | a fragment of the dataset.

The presented functional blocks, depicted as structured
diagrams, reflect the complete logic of signal processing
from reading input data to forming a feature vector suitable
Fig. 6. Algorithm for saving the formed feature dataset for subsequent analysis or classification.

C Start )

v
| Obtaining the main directory path “main_folder_path”
v
arr_files =[]
labels =[]
12

End

| folders_name = sorted(os.listdir(main_folder_path)) |
v

for folder name in folders name

]
full folder path = Path(main_folder_ path) / folder_name

full_folder_path.is_dir()

files = [str(file.as_posix()) for file in full folder path.glob("'*.iq")]
v

Tax files != null Hi

arr_files.append(files) labels.append(folder_name) return arr_files, labels

C Erlnd ) PE—

Fig. 7. Algorithm for generating directory names and determining access paths to signals in IQ data
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Obtaining the main directory path
(main_folder_path)

v

all_features = []
all_labels =[]

v

arr_included files, labels =
init_folders(main_folder_ path)

v

for label_idx, folder in
enumerate(arr_included _files):

v

| label_name = labels[label_idx] |

v

> for file in folder

v

| label name = labels[label idx] |

v

feature_dict =
extract_features(iq_data)

v

all_features.append(feature_dict)
all_labels.append(label_name)

| return all_features, labels |<—

End

Fig. 8. Algorithm for computing features for each signal
read from an individual element of the input I1Q data

Each diagram illustrates the key stages of the corres-
ponding method: calculation of the PSD, formation of
generalized spectral characteristics (centroid, bandwidth,
flatness, roll-off, peak frequency), as well as the computation
of statistical metrics based on the amplitude and phase of the
signal. This approach has allowed not only to document the

implementation of algorithms in code but also to visualize
their internal structure, which is important for verifying
the correctness of the logic and for further integration into
larger systems.

The implemented functions are universal, modular, and
can be used to build a flexible and extensible system for
automated processing and classification of radio signals.
This creates prerequisites for further system optimization,
addition of new features describing the structure and
properties of signals with new informative metrics and
adaptation of algorithms to specific tasks in the fields of
radio monitoring, intelligence or spectral analysis.

CONCLUSIONS

1. A multi-level approach to the analysis of complex
radio signals has been implemented with the purpose
of extracting informative features suitable for auto-
mated recognition and classification.

2. Processing of spectral, temporal and amplitude-phase
domains allowed for a comprehensive assessment of
the signal structure.

3. Individual features were distinguished: power spectral
density indicators, integral spectral characteristics
(centroid, bandwidth, flatness, roll-off, peak
frequency) and statistical metrics of the amplitude-
phase structure.

4. Generalized parameters such as mean, variance,
entropy and zero-crossing rate enabled coverage of
both global and local signal characteristics.

5. The obtained results confirmed that the combination
of these methods forms a reliable feature space for
machine learning tasks, improving classification
accuracy even in the presence of noise or low signal-
to-noise ratio.

6. Further research should focus on comparing the
effectiveness of various machine learning models
based on the formed features, as well as on opti-
mizing computational costs for real-time applica-
tions.

7. A promising direction is the expansion of the feature
set considering phase transitions, detection of cluster
structures in the spectrum and adaptation of the
methodology for wideband signals.

amp_mean ¥ ¢ amp_std YV ¢ amp_max ¥V ¢ amp_skew YV ¢ amp_kurtosis Y ¢ phase_mean ¥ ¢ phase_std YV ¢ |
1 1831.4536 3090.694 14095.227 1.8800377930256893  2.0640965379771163 142210.48 115346.57
2 1961.2703 3112.7825 13989.333  1.850015392126522  1.9391086488080722 479807.4 190763.4
3 1936.0365 3026.7715 13891.269 1.8334691132352061 1.8702793554594797 332630.28 187822.08
4 1952.7899 3093.8662 13971.309 1.8380752665013838 1.9002891915314812 -191299.36 201104.72
5 2048.4841 3137.9043 14023.131  1.735830801610125  1.49087493602255 101091.34 147802.03
6 1969.9765 3067.1128 13975.484 1.8153502103089052 1.7883250320399275 -88395.93 19699628
7 1960.5115 3052.6484 14001.762 1.8840210067106582  2.115819903417929 -238490.14 159384.23
8 1980.843 3093.8518 14184.329 1.7883332991710894 1.7251331339340972 3127.8557 193228.36
9 1940.5796 3062.8003 14031.621 1.8928292159579956 2.1005278943149355 349798.16 158373.47
10 2021.5847 3056.6514 13977.065 1.8256337331530905  1.886251349512154 -58503.508 153974.3
11 2014.6664 3064.01 13979.331 1.8213433572430322  1.8683486970416023 165537.48 175737.33
12 1900.2875 3152.198 14333.477  1.840660139245009 1.8526934814467584 94310.11 184806.55
13 1996.9191 3048.5088 14008.874 1.8482019762288397 1.9735842624733486 154248.02 192181.3

Fig.9. A fragment of the dataset with features extracted from complex signals represented as IQ data
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HEWPOMEPEKEBUI METO/I TOCJLIKEHHSI
CIIEKTPAJIbHUX XAPAKTEPUCTHUK

Y emammi pozensioaemocs 3a0aua knacughikayii padio-
CUSHANIB HA OCHOBI CNEKMPANIbHUX O3HAK, CPOPMOBAHUX
i3 KOMNJIEeKCHUX HU3bKOYACMOMHUX 8UOIDOK CUSHATY, U0
sK0uaioms inghazny ma keadpamypny komnonenmu. Oc-
HOBHOI MEMOI 00CHIONHCEHHs € PO3POOIEHHS MOOeLi Md-
WUHHO2O HABYAHHSL, 30aMHOT eheKmuUHO i0enmugixysamu
MUN CUSHATTY 30 CREKMPATbHUMU XAPAKMepUCmuxamu. J{is
npeocmasients 8XiOHUX OAHUX BUKOPUCTNAHO CHEeKMPalb-
HY winbuicme nomyosicnocmi (PSD), obuucneny memodom
Petera Welcha, a makooic cykynnicme cmamucmuyHux
ma 4acmomHo-eHepeemuyHux 03HaK, Wo 8i0oopa;caioms
amnaimyoHo-ghaz08y CmpyKmypy CUCHATL).

THopisuanouuii ananiz 3 K1aCUYHUMU MemoOamu Kia-
cugixayii cuenanie, 3aCHOBAHUMU HA Y3a2ANTbHEHUX CIa-
MUCIUKAX, NPOOEMOHCIPYBAB Nepesazy 3anponoHO8AHO20
nioxo0y sIK 3a MOYHICMIO, MAK I 34 WEUOKOOIEI0 npu 06pobyi
8eUKUX 00CA2I8 OAHUX.

YV meorcax docnioscenns sanpononosarno apximexmypy
Modeni, onucano npoyec ii HaguanHs, eanioayii ma mec-
myeaHHs. J[o0amKo8o npoaHanizosano 6naue napamempis
CNeKmpaibHO20 po3KIaAdy Ha aAKicmob Kiacugixayii. Pe-
3YIbMAMU eKCHepUMeHmMailbH020 MOOEN8AHHS 3AC8IOY)-
10Mb, WO NOEOHAHHA CNEKMPATbHUX MA CIMAMUCIMUYHUX
0ecKpunmopie 0036015€ 00CASMU BUCOKOT MOYHOCMI Npu
PO3NIZHABAHHI PI3HUX MUNIE padiocucHanie. 3anponoHo-
8aHUll NiOXi0 Modice Gymu ehpeKmueHo 3aCmocoBaArUl Y
NPAKMUYHUX CUCTEMAX ABMOMAMU308AHO20 AHANIZY padio-
4acmomHno20 cnekmpa ma UAGNEeHHs CUCHAIE 8 YMO8AX
CKIAOHOI e1eKmpoMAaeHimHoi 00CMaHO8KU.

Kniouoei cnoea: nomyosicuicms, nioxio, eanioayis,
mecmy6amns, MOOeib, cucmemd, O3HaKd, Kiacugikayisi,
paodiocueHanu, amniimyoa, gasa.
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